0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂离子在含人工SEI薄膜的锂金属负极表面的电沉积行为

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-04-24 10:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着便携式电子设备的普及和电动汽车的快速发展,高能量密度的电化学储能装置和动力电池受到了广泛的关注。目前锂离子电池常用的石墨负极材料理论容量低(372 mAh g-1),难以满足高能量密度锂电池的设计需求。锂(Li)金属被认为是下一代锂电池负极材料的最有希望的候选者,其比容量(3680 mAh g-1)比石墨负极高近10倍,而且具有较低的还原电位(-3.04 V)。但是锂金属作为负极材料也有明显的缺点。锂金属阳极表面高的交换电流密度和受限于电解液性质的传质过程,是造成电极表面枝晶生长的根本原因。尖锐的锂枝晶可以穿透隔膜与正极接触,造成电池短路,限制了锂金属负极的产业化应用。

深入了解金属锂的电沉积行为对锂金属电池的实用化至关重要。长时间以来,学者们致力于探索抑制锂离子在锂金属负极表面的不均匀电沉积行为的方法,稳定锂金属电极/电解质界面并提升全电池的循环性能。文献表明,经过优化的液态电解质体系,具有多功能特性的人造固体电解质界面(SEI)、新型的氧化物以及硫化物固态电解质等可以在一定程度上提高锂金属负极的稳定性并抑制锂枝晶的生长。

本文作者基于修正的Butler-Volmer方程,菲克定律以及von Mises 屈服准则,研究了在不同的电流密度下,锂离子在含人工SEI薄膜的锂金属负极表面的电沉积行为,以及浓度场和相关的法拉第电流密度(FAD)的演化过程。将锂的电沉积均匀性与施加电流密度(ACD)对比发现,当施加的电流密度小于体系的扩散电流密度,有望实现均匀的金属锂电沉积。

【工作介绍】

本工作通过相场模拟,研究了沉积电流密度与金属锂负极表面人工SEI的破损对于锂离子沉积均匀性的影响。通过研究不同电流密度下浓度场和相应的法拉第电流密度(FCD)的演化过程,研究了金属锂在人工SEI膜覆盖的电极表面的电沉积行为。研究结果表明,金属锂可以在低于极限扩散电流密度的条件下均匀沉积,提高相关电化学系统的极限扩散电流密度可以作为提高锂金属电池性能的设计方向。该研究以“Diffusion limited current density: A watershed in electrodeposition of lithium metal anode”为题发表在能源材料期刊Advanced Energy Materials上。莫斯科国立大学博士生徐谢宇为论文的第一作者,莫斯科物理技术学院刘洋洋研究员,Olesya O. Kapitanova博士和瑞典查尔姆斯理工大学熊仕昭研究员为论文通讯作者。

【内容表述】

04883c72-c2f5-11ec-bce3-dac502259ad0.png

图 1.(a)结合传质和电荷转移动力学的金属锂电沉积示意图。(b)电化学系统的极限扩散电流密度。

本文探索了包括锂离子基于浓度梯度的扩散过程,基于金属负极表面真实电流密度的锂离子沉积过程,以及基于屈服准则的金属锂/人工SEI的协同变形过程。锂离子的还原过程描述如下:

04a8c6c2-c2f5-11ec-bce3-dac502259ad0.png

局部电流密度作为电位和锂离子浓度的函数可以由Butler-Volmer方程给出:

04b93ef8-c2f5-11ec-bce3-dac502259ad0.png

使用极限电流密度作为参数来描述受传质控制的电化学反应:

04cb5246-c2f5-11ec-bce3-dac502259ad0.png

本文首先研究了电流密度对锂金属电沉积均匀性的影响。此外,在不同电流密度下研究了SEI的破碎过程对锂金属电沉积均匀性的影响。

04de805a-c2f5-11ec-bce3-dac502259ad0.png

图 2. 不同电流密度下SEI基底上初始的浓度场和电场。电流密度为(a)0.5 mA cm-2、(b)0.75 mA cm-2、(c)1.0 mA cm-2、(d)2.0 mA cm-2和(e)3.0 mA cm-2。(f)初始状态下不同电流密度下Li-SEI界面法拉第电流密度分布。(g)电沉积锂顶部中心与顶角件法拉第电流密度差值。

如图2a-e所示,随着施加的电流密度增加,基底附近的浓度场表现出不均匀的变化趋势,浓度梯度明显增加。当电流密度上升到3.0 mA cm-2时,两个矩形之间的空间底部显示出极低的锂离子浓度。因为锂离子浓度分别的不均匀性,随着施加电流密度的增加,对应的法拉第电流密度沿剖面变得更不均匀。如图2f所示,底部和顶部之间的法拉第电流密度差异随着施加电流密度的增大而增加。如图2g所示,随着电流密度的增加,当ACD>0.75 mA cm-2时出现“尖端效应”,并且随着ACD的增加而变得更强。随着ACD的进一步增加,矩形顶部的位置的FCD会明显的增强。与此同时,矩形特征的屋顶与空间底部的差异变得更加明显。总体而言,基底轮廓上的浓度场和相应的法拉第电流密度与施加于电化学系统的电流密度密切相关。

04fe2612-c2f5-11ec-bce3-dac502259ad0.png

图 3.不同电流密度下锂微观形貌上的法拉第电流密度的变化。电流密度为(a)0.5 mA cm-2、(b)0.75 mA cm-2、(c)1.0 mA cm-2、(d)2.0 mA cm-2和(e)3.0 mA cm-2。(f)金属锂上的法拉第电流密度分布演变过程。

如图3a-b所示,当ACD≤0.75 mA cm-2的DLCD时,电极表面的法拉第电流密度分布均匀。相反,一旦ACD>DLCD,FCD的分布就会产生差异,随着ACD增加到3.0 mA cm-2,FCD分布的非均匀性变得更加严重(图3c-e)。在整个电沉积过程中,较低的ACD可以实现FCD的均匀分布,而当ACD大于DLCD时,FCD从初始状态到收敛状态分布都不均匀,而且FCD的不均匀性随着ACD的增加而急剧恶化。如图3f所示,具有较高ACD的金属锂表面的FCD的标准偏差明显大于具有低的DLCD的ACD的标准偏差。FCD随着ACD的增大而增长更快。

0518915a-c2f5-11ec-bce3-dac502259ad0.png

图 4. 不同电流密度下金属锂沉积的形貌演变。电流密度为(a)0.5 mA cm-2、(b)0.75 mA cm-2、(c)1.0 mA cm-2、(d)2.0 mA cm-2和(e)3.0 mA cm-2。(f)锂沉积均匀性指数定义示意图。(g)不同电流密度下的电沉积均匀性和(h)其对施加电流密度与DLCD的相关性。

如图4a所示,由于矩形基底周围锂离子分布均匀且FCD的差异很小,当施加0.5 mA cm-2的小电流密度时,金属锂可以实现均匀的电沉积过程。当ACD从0.5 mA cm-2增长到0.75 mA cm-2时,锂离子电沉积的最终形态从矩形变为灯泡状。此外,当ACD大于0.75 mA cm-2时,“灯泡”顶部的特征显示出凹陷区域,并且随着ACD增加到3.0 mA cm-2,凹陷区域变得更深(图4d-e),锂的球状形态变为“牙齿”状,锂沉积的不均匀性明显增强。如图4h所示,电沉积均匀性随着ACD/DLCD比值的增加而下降。当比值小于1时(ACD

05363552-c2f5-11ec-bce3-dac502259ad0.png

图 5. 初始状态下不同电流密度下破碎的SEI基底上电沉积过程。电流密度为(a,f)0.5 mA cm-2,(b,g)0.75 mA cm-2,(c,h)1.0 mA cm-2, (d,i)2.0 mA cm-2和(e,j)3.0 mA cm-2。不同电流密度电沉积(k)锂的浓度梯度和(l)法拉第电流密度在Y轴上的分布。

如前所述,由于电沉积不均匀引起界面的起伏,导致锂上的SEI膜会破裂。如图5a-e所示,在初始状态下,随着电流密度的增加,基底上的浓度分布越不均匀。基底附近的浓度场可以分为两个区域:(1)两个电沉积柱之间的狭窄区域和(2)顶部上方的区域。如图5k所示,在两个柱之间的狭窄区域,锂离子的浓度随着ACD的增加而增加。与浓度分布情况不同,法拉第电流密度分布的主要变化出现在裂纹点附近。这些裂纹点是电场线的主要集中点,使得在局部区域产生更高的FCD(图5f-j)。如图5l所示,在靠近电沉积层顶部的Y>15 μm的位置,FCD的急剧增加,并且随着施加的电流密度从0.5 mA cm-2增加到3.0 mA cm-2,这种趋势增强。

0559da98-c2f5-11ec-bce3-dac502259ad0.png

图 6. 不同电流密度条件下终态时SEI基底上的电沉积。电流密度为(a,f)0.5 mA cm-2、(b,g)0.75 mA cm-2、(c,h)1.0 mA cm-2、(d,i)2.0 mA cm-2和(e,j)3.0 mA cm-2。

如图6a-c所示,锂继续沉积在局部裂纹上,最终沉积的锂会将裂纹完全覆盖,呈现出灯泡叠加状形态。如图6f-h所示,基底上的FCD分布仍然集中在裂纹处。同时,电沉积后的锂会阻塞柱之间的空隙,导致锂无法沉积在欠浓度区域,从而在锂微结构中产生空隙。因此,结果表明,损坏的SEI将降低锂负极的致密度。如图6d-e和i-j所示,当ACD>1.0 mA cm-2时,由于物质转移动力学和电荷转移动力学之间的不匹配增强,导致电沉积后形态的界面出现明显的界面起伏。在较高ACD下电沉积的锂与其他相邻的锂微结构融合在一起,导致SEI碎片被埋在锂金属负极内。于此同时,新鲜的锂暴露于电解质中持续发生副反应。因此,将ACD降低到小于DLCD不仅可以促进锂的均匀电沉积和稳定的循环性能,而且可以减少活性锂的消耗。

上述结果表明,DLCD是锂电沉积均匀性的关键参数,它由电极附近锂离子的传质过程决定。因此,可以通过(i)提高电解液中锂离子的浓度(ii)促进锂离子在电极附近的扩散,如设计具有较高离子导电性的SEI膜,降低电解液的动态粘度或提高温度;(3)降低电极孔隙度,延缓电极上锂离子的耗竭。为了实现锂金属负极在电池中的均匀沉积,需要综合考虑这些可行的解决方案。

Xieyu Xu, Xingxing Jiao, Olesya O. Kapitanova,* Jialin Wang, Valentyn S. Volkov, Yangyang Liu,* and Shizhao Xiong*. Diffusion limited current density: A watershed in electrodeposition of lithium metal anode,Adv. Energy Mater.2022,2200244.https://doi.org/10.1002/aenm.202200244

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子
    +关注

    关注

    5

    文章

    571

    浏览量

    39509
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21232
  • 金属
    +关注

    关注

    1

    文章

    619

    浏览量

    25049

原文标题:极限扩散电流密度:锂金属负极电沉积的分水岭

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    锂离子电池是如何工作的?了解它的内部结构和制造过程

    锂离子电池已经成为现代生活中不可或缺的能源部件,无论是手机、笔记本电脑,还是电动汽车,都依赖它来提供电力。这种电池通过锂离子正极和负极之间的移动来储存和释放能量,由于工作原理可靠且安
    的头像 发表于 09-23 18:03 2289次阅读
    <b class='flag-5'>锂离子</b>电池是如何工作的?了解它的内部结构和制造过程

    攻克无负极金属电池难题的新钥匙

    “终极选择”的无负极金属电池。这种电池制造时直接使用铜箔作为负极基底,完全摒弃了传统的石墨等负极
    的头像 发表于 09-11 18:04 526次阅读
    攻克无<b class='flag-5'>负极</b><b class='flag-5'>锂</b><b class='flag-5'>金属</b>电池难题的新钥匙

    突破快充瓶颈!Nature Energy揭示金属电池电解质设计新准则

    【美能锂电】观察:随着电动汽车对续航里程和充电速度的要求不断提高,传统锂离子电池的能量密度和快充能力逐渐接近理论极限。金属电池(LMBs)因其极高的理论容量而被视为下一代高能量密度电池的终极选择
    的头像 发表于 09-10 09:03 1200次阅读
    突破快充瓶颈!Nature Energy揭示<b class='flag-5'>锂</b><b class='flag-5'>金属</b>电池电解质设计新准则

    共聚焦显微镜揭示:锌负极表面结构制造及离子电池中的应用研究

    作为高端光学精密测量技术的核心设备,为表征锌负极表面三维成像提供了关键支撑。光子湾科技共聚焦显微镜可精准捕捉表面结构细节,助力深入探究结构与性能的关联,为锌离子
    的头像 发表于 08-14 18:05 1020次阅读
    共聚焦显微镜揭示:锌<b class='flag-5'>负极</b><b class='flag-5'>表面</b>结构制造及<b class='flag-5'>在</b>锌<b class='flag-5'>离子</b>电池中的应用研究

    锂离子电池负极材料的挑战与硅基负极的潜力

    我国锂离子电池负极材料市场规模随着新能源汽车的兴起及锂离子电池等产品的发展增长迅速,目前已有百亿规模。目前商业上能够实现大规模应用的负极材料是石墨,其实际比容量的发挥已接近理论值(37
    的头像 发表于 08-05 17:55 923次阅读
    <b class='flag-5'>锂离子</b>电池<b class='flag-5'>负极</b>材料的挑战与硅基<b class='flag-5'>负极</b>的潜力

    质量流量控制器薄膜沉积工艺中的应用

    听上去很高大上的“薄膜沉积”到底是什么? 简单来说:薄膜沉积就是帮芯片“贴膜”的。 薄膜沉积(T
    发表于 04-16 14:25 1030次阅读
    质量流量控制器<b class='flag-5'>在</b><b class='flag-5'>薄膜</b><b class='flag-5'>沉积</b>工艺中的应用

    水系电池金属负极腐蚀问题综述

      研究背景 水系金属电池(AMB)直接采用金属作为负极(如Zn、Al、Mg等),不仅在大规模储能领域,可穿戴、生物相容性等应用方面也具有优越性。阳极侧的电化学基于
    的头像 发表于 02-18 14:37 1350次阅读
    水系电池<b class='flag-5'>金属</b><b class='flag-5'>负极</b>腐蚀问题综述

    超声波焊接有利于解决固态电池的枝晶问题

    表面和陶瓷表面的氧化膜,为解决Li/LLZTO界面提供参考。此外,陶瓷金属化技术进一步增强了负极/电解质界面性能。例如,通过
    发表于 02-15 15:08

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处沉积行为的影响

    清华新闻网2月7日 硫化物固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率高(≈10 mS/cm)、机械加工性能优异、与金属负极
    的头像 发表于 02-14 14:49 733次阅读
    清华大学:自由空间对硫化物固态电解质<b class='flag-5'>表面</b>及内部裂纹处<b class='flag-5'>锂</b><b class='flag-5'>沉积</b><b class='flag-5'>行为</b>的影响

    FIB-SEM技术锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究。锂离子电池通常由正极、负极、电解质、隔膜和封装材料等部分构成。正极材料和
    的头像 发表于 02-08 12:15 1029次阅读
    FIB-SEM技术<b class='flag-5'>在</b><b class='flag-5'>锂离子</b>电池的应用

    碳化硅薄膜沉积技术介绍

    多晶碳化硅和非晶碳化硅薄膜沉积方面各具特色。多晶碳化硅以其广泛的衬底适应性、制造优势和多样的沉积技术而著称;而非晶碳化硅则以其极低的沉积
    的头像 发表于 02-05 13:49 1795次阅读
    碳化硅<b class='flag-5'>薄膜</b><b class='flag-5'>沉积</b>技术介绍

    快速充电电池中沉积SEI膜生长与电解液分解的耦合机制定量分析

    研究背景 随着电动汽车(EV)市场的快速发展,消费者对电池充电时间的要求越来越高,尤其是快速充电技术的需求日益迫切。然而,锂离子电池(LIBs)快速充电条件下的性能退化问题严重限制了其应用。快速
    的头像 发表于 01-15 10:53 2149次阅读
    快速充电电池中<b class='flag-5'>锂</b><b class='flag-5'>沉积</b>、<b class='flag-5'>SEI</b>膜生长与电解液分解的耦合机制定量分析

    筛选理想的预化正极应用于无负极金属锂电池

    研究背景无负极金属电池(AF-LMBs)初始组装过程中移除了负极侧的,可以实现
    的头像 发表于 12-24 11:07 1564次阅读
    筛选理想的预<b class='flag-5'>锂</b>化正极应用于无<b class='flag-5'>负极</b><b class='flag-5'>金属</b>锂电池

    锂离子电池的正极为什么用铝箔负极用铜箔?

    随着锂离子电池应用越来越广泛,很多人对锂离子电池也越来越感兴趣,那么为什么锂离子电池中正极要使用铝箔而负极要使用铜箔呢?其实关于这一问题主
    的头像 发表于 12-17 10:10 5625次阅读
    <b class='flag-5'>锂离子</b>电池的正极为什么用铝箔<b class='flag-5'>负极</b>用铜箔?

    离子液体添加剂用于高压无负极金属电池

           研究背景 基于双(氟磺酰基)酰亚胺(LiFSI)的浓缩电解质已被提出作为无负极金属电池(AFLMB)的有效兼容电解质。然
    的头像 发表于 12-10 11:00 2077次阅读
    <b class='flag-5'>离子</b>液体添加剂用于高压无<b class='flag-5'>负极</b><b class='flag-5'>锂</b><b class='flag-5'>金属</b>电池