0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

八种常见的数据分析方法介绍

数据分析与开发 来源:胖里的日常 作者:胖里 2021-09-14 09:44 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

不能度量,就无法增长。

数据分析对于企业商业价值的提升起到了至关重要的作用。在具体的业务场景中,一般有八种常见的数据分析方法。

1

数字和趋势

采用数字和趋势图进行数据信息的展示最为直观,从具体的数字和趋势走向中可以更好地得到数据信息,有助于提高决策的准确性和实时性。

比如将某app或某网站的uv、pv等指标统一汇总到一个数据看板上,进行实时更新。这样的一个数据看板使得数字和趋势一目了然,非常直观。

2

维度分解

当单一的数字或趋势过于宏观时,我们可以通过不同维度对数据进行分解,以获取更加精细的数据洞察。在进行维度选择时,需要考虑此维度对于分析结果的影响。 比如某app的日活突然下降了,可以通过拆分新老用户、渠道、app版本、地区、设备等维度,发现问题所在,也就是将宏观的问题拆分成小的问题去聚焦问题所在。

3

用户分群

用户分群即指针对符合某种特定行为或具有共同背景信息的用户,进行归类处理。也可通过提炼某一类用户的特定信息,为该群体创建用户画像。 例如使用同一app的用户可以按照地址进行用户群体的划分,可分为“北京”、“上海”、“杭州”等。由此便可进一步观察某一用户群体的一些行为或数据指标,如app使用时长,使用频度,购买次数、购买金额等,以此来创建该用户群体的画像。 用户分群的意义在于我们可以针对具有特定行为或特定背景的用户,进行针对性的用户运营和产品优化,比如对具有“放弃支付或支付失败”的用户进行对应优惠券的发放,以此来实现精准营销,大幅提高用户的支付意愿和成交量。

4

转化漏斗

かけすな

绝大部分商业变现的流程,都可归纳为漏斗。漏斗分析是常见的一种数据分析手段,比如常见的用户注册转化漏斗,电商下单漏斗。整个漏斗分析的过程就是用户从前到后转化的路径,通过漏斗分析可以得到转化效率。 这其中包含三个要点:其一,整体的转化效率。 其二,每一步(转化节点)的转化效率。 其三,在哪一步流失最多,原因是什么,这些流失的用户具有什么特征。 上图是共包括三步的注册流程,整个注册流程的总体转化率为46.5%,即1000个访问了注册页的用户中,有465个成功完成了注册。关注到每一步的转化率,发现第二步的转化率为65.3%,明显低于第一步的85.3%和第三步的83.5%,由此可推测,这一步骤可能存在问题。可针对这一注册步骤去发现问题,再进行转化率的提高。

5

行为轨迹

数据指标本身只是真实情况的一种抽象,通过关注用户的行为轨迹,才能更真实地了解用户的行为。 例如只看到常见的uv和pv指标,是无法理解用户是如何使用你的产品的。通过大数据手段来还原用户的行为轨迹,可以更好地关注用户的实际体验,从而发现具体问题。如果维度分解依旧难以确定某个问题所在,可通过分析用户行为轨迹,发现一些产品及运营中的问题。

6

留存分析

人口红利逐渐消退,拉新变得并不容易,此时留住一个老用户的成本往往要远低于获取一个新用户的成本,因此用户留存成为了每个公司都需要关注的问题。可以通过分析数据来了解留存的情况,也可以通过分析用户行为找到提升留存的方法。 如某阅读类app,每天阅读时长在25-30分钟(举个)的用户的留存要远高于阅读时长在5-10分钟的用户的留存,因此可考虑将提高用户的阅读时长作为一种提升留存的方式。 常见的留存分析场景还包括不同渠道的用户的留存、新老用户的留存以及一些新的运营活动及产品功能的上线对于用户回访的影响等。

7

A/B测试

A/B测试通常用于测试产品新功能的上线、运营活动的上线、广告效果及算法等。 比如某产品设计了两种不同的界面(图来源于网络),其中包括界面背景颜色变化、点击按钮文案变化,模特变化等。以点击按钮的设计为例,通过比较实验组(A)和对照组(B)的按钮点击次数、点击率两个指标,来评估哪一种点击按钮的设计带来的效果更好。 进行A/B测试需要两个必备因素:第一,足够的测试时间;第二,较高的数据量和数据密度。 当产品的流量不够大时,进行A/B测试很难得到统计结果。

8

数学建模

涉及到用户画像、用户行为的研究时,通常会选择使用数学建模、数据挖掘等方法。比如通过用户的行为数据、相关信息、用户画像等来建立所需模型解决对应问题。 实践出真知,希望大家能在日常工作、学习或项目中尝试使用上述方法,创造更多的商业价值。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 测试
    +关注

    关注

    8

    文章

    6042

    浏览量

    130744
  • 数据
    +关注

    关注

    8

    文章

    7315

    浏览量

    94001
  • 分析
    +关注

    关注

    2

    文章

    134

    浏览量

    33891

原文标题:浅谈数据分析常用的 8 种方法

文章出处:【微信号:DBDevs,微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    经营数据分析可以通过哪些方式

    在数聚股份看来,提起经营数据分析,大家往往会联想到一些密密麻麻的数字表格,或是高级的数据建模手法,再或是华丽的数据报表。其实,“ 分析 ”本身是每个人都具备的能力,对于业务决策者而言,
    的头像 发表于 12-05 16:31 372次阅读

    广立微DE-G零断档重构智能数据分析

    近日,数据分析领域被一则消息推上风口浪尖:一家老牌软件巨头将撤出中国。在此背景下,其旗下以灵活著称的数据分析软件,在中国市场的未来将面临极大的不确定性。
    的头像 发表于 11-07 10:39 461次阅读

    FPGA测试DDR带宽跑不满的常见原因及分析方法

    在 FPGA 中测试 DDR 带宽时,带宽无法跑满是常见问题。下面我将从架构、时序、访问模式、工具限制等多个维度,系统梳理导致 DDR 带宽跑不满的常见原因及分析方法
    的头像 发表于 10-15 10:17 587次阅读

    【产品介绍】Altair RapidMiner数据分析与人工智能平台

    AltairRapidMiner赋能组织解锁数据洞察,运用数据分析和先进的人工智能自动化,提供可扩展的面向未来的解决方案。Altair数据分析和人工智能平台包括数据准备、
    的头像 发表于 09-18 17:56 660次阅读
    【产品<b class='flag-5'>介绍</b>】Altair RapidMiner<b class='flag-5'>数据分析</b>与人工智能平台

    普迪飞 Exensio®数据分析平台 | Test Operations解锁半导体测试新纪元

    TestOperations是Exensio数据分析平台的四个主要模块之一。T-Ops模块旨在帮助集成器件制造商(IDM)、无晶圆厂半导体公司(Fabless)和外包半导体(产品)封测厂(OSAT
    的头像 发表于 08-19 13:53 850次阅读
    普迪飞 Exensio®<b class='flag-5'>数据分析</b>平台 | Test Operations解锁半导体测试新纪元

    如何通过数据分析识别设备故障模式?

    通过数据分析识别设备故障模式,本质是从声振温等多维数据中提取故障特征,建立 “数据特征 - 故障类型” 的映射关系,核心可通过特征提取、模式匹配、趋势分析三步实现,精准定位故障根源与发
    的头像 发表于 08-19 11:14 546次阅读
    如何通过<b class='flag-5'>数据分析</b>识别设备故障模式?

    构建自定义电商数据分析API

      在电商业务中,数据是驱动决策的核心。随着数据量的增长,企业需要实时、灵活的分析工具来监控销售、用户行为和库存等指标。一个自定义电商数据分析API(应用程序接口)可以自动化
    的头像 发表于 07-17 14:44 410次阅读
    构建自定义电商<b class='flag-5'>数据分析</b>API

    AI数据分析仪设计原理图:RapidIO信号接入 平板AI数据分析

    AI数据分析仪, 平板数据分析仪, 数据分析仪, AI边缘计算, 高带宽数据输入
    的头像 发表于 07-17 09:20 502次阅读
    AI<b class='flag-5'>数据分析</b>仪设计原理图:RapidIO信号接入 平板AI<b class='flag-5'>数据分析</b>仪

    如何使用协议分析仪进行数据分析与可视化

    使用协议分析仪进行数据分析与可视化,需结合数据捕获、协议解码、统计分析及可视化工具,将原始数据转化为可解读的图表和报告。以下是详细步骤及关键
    发表于 07-16 14:16

    电力系统数据分析技术

    随着智能电网技术的发展和大数据时代的到来,电力系统数据分析技术已成为电力行业不可或缺的一部分。这些技术能够帮助电力公司更好地理解电网的运行状态,预测电力需求,优化电力资源分配,提高电网的稳定性
    的头像 发表于 01-18 09:46 1236次阅读

    罗克韦尔自动化数据分析工具赋能企业优化生产

    在上一篇文章中,罗克韦尔自动化为各位分享了使用制造执行系统 (MES) 优化生产的方法。承接上期,罗克韦尔将继续为您介绍数据分析工具等智能技术如何为优化生产赋能。
    的头像 发表于 01-17 11:02 766次阅读

    智能焊接数据分析设备提升工业效率与精度

    随着科技的不断进步,智能制造已经成为推动工业4.0发展的关键力量。在众多的智能制造技术中,智能焊接数据分析设备因其在提高生产效率和焊接质量方面的显著效果而受到广泛关注。本文将探讨智能焊接数据分析设备
    的头像 发表于 01-15 14:11 677次阅读

    智能焊接数据分析设备提升制造精度与效率

    不稳定、生产效率低等问题。而智能焊接数据分析设备的应用,则为解决这些问题提供了新的思路和技术手段。本文将探讨智能焊接数据分析设备如何通过数据采集、分析及应用,提升焊接制?
    的头像 发表于 01-14 09:36 770次阅读

    ADC12D1800RF使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?

    请问利用ADC12D1800RF参考电路设计,对比于数据手册,使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?
    发表于 01-02 07:14

    Mathematica 在数据分析中的应用

    数据分析是现代科学研究和商业决策中不可或缺的一部分。随着数据量的爆炸性增长,对数据分析工具的需求也在不断增加。Mathematica,作为一强大的计算软件,以其独特的符号计算能力和广
    的头像 发表于 12-26 15:41 1094次阅读