0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

5G毫米波是否真的改变了芯片测试

中科院半导体所 来源:TechSugar 作者:TechSugar 2021-06-29 18:06 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

众所周知,目前全球采用两种不同频段部署5G网络,即3GPP划分的FR1频段和FR2频段,其中FR1频段范围为450MHz-6GHz,最大带宽100MHz,被称为Sub-6GHz频段;FR2频段范围为24.25GHz-52.6GHz,最大带宽400MHz,被称为毫米波频段,两者共同组成了5G频段。

5G改变了什么?

为了充分利用频谱资源,5G在系统中引入了众多针对新应用场景进行了高度优化的技术,例如网络切片、频谱共享和共存、聚合带宽高达1GHz的载波聚合、大规模MIMO和天线阵列系统、以及固定无线接入,小型基站和毫米波技术等等。

这直接导致5G射频前端模块(RF FEM)所需要的功率放大器(PA)、滤波器(Filter)、开关(Switch)、低噪声放大器(LNA)和天线调谐器(Tuner)的需求量倍增。此外,5G智能手机开发商还担心RF器件的质量、散热和能效问题,以及如何将所有这些RF模块全部塞到一部5G手机里。

以大规模MIMO(Massive MIMO)技术为例,5G终端产品中的天线数量相比于4G终端成倍增加,终端设备中天线数量可能是32个、64个,在基站中可能会达到512、1024个。

之所以使用大规模天线阵列,原因在于天线的辐射方向是通过设计固定的,通常很难控制或改变它,除非改变天线的几何形状。而在5G中,相控阵天线则使用波束成型技术来动态控制辐射方向,实现方式主要包括以下4种:

由多个天线在同一时间以同一频率辐射而成。

辐射方向由每个天线单元波的矢量叠加

相控阵可以通过控制阵列中每个天线单元的相位来控制其辐射方向

天线单元越多,天线孔径越大,主瓣增益越大,波束越窄

同时,这也使得天线封装技术AiP(antenna-in-package)逐渐受到重视。Yole Development的数据显示,AiP模组于2019年开始产生销售,预计到2025 年市场空间将达到13亿美元,年均复合增长率为68%。

再以高通最新发布的第4代高通毫米波天线模组为例,该模组支持比前代产品更高的发射功率,支持包括n259(41GHz)新频段在内的全球所有毫米波频段,但却同时保持了与前代产品一样紧凑的占板面积。

pYYBAGDa8NWAdARzAABDqAVBqgI401.png

另一个特别值得关注的,是毫米波技术的引入。

由于采用了毫米波频段和正交频分复用(OFDM)波形,再加上新兴的先进传输方法,使得5G新无线(NR)的空中接口不但与以往几代的移动通信完全不同,也使得毫米波芯片结构更加复杂,涵盖基带、DAC/ADC、IF、波束成形、不同的射频前端、天线等多个复杂组件。

数据显示,2020年之后,5G手机上仅与毫米波相关的IC数量就达到了9-15颗,而为了支持10Gbps的数据传输速率,手机中还增加了贴片天线阵列。因此,对测试工程师来说,他们面对的挑战注定非比寻常。

这意味着,为达到 0 DPPM的质量水准,测试人员不但要控制质量风险,还需要进行更多功能测试,包括增加prober和模组端的功能测试、可以检测由于上游模组质量或者装配导致的故障、面对5G的丰富应用场景,提供多样化的测试用例、以及进行特性测试用以揭示失效机制。

毫米波频段测试的重要技术

5G毫米波手机架构由基带芯片、中频芯片和毫米波射频芯片组成。三者配合完成基带信号到中频再到毫米波的转化,中频芯片的频率范围一般在6-15GHz,毫米波芯片一般工作在24.25-52.6GHz的毫米波频段。

毫米波中频和射频芯片的测试项目,和典型RF收发器(transceiver)芯片类似,主要的测试项目仍然是线性度和灵敏度以及直流/DFT(BIST/Scan)等。

在传统的3G、4G测试中,芯片中的多个测试端口都是通过射频线缆与测试仪表接口连接开展RF测试。然而在5G测试中,不但出现了大规模天线阵列,而且天线和芯片通过封装已经合成一体,测试时无法直接接触到模组里的每一个器件。

此外,测试对象也不仅是天线,而是整个系统,由于天线和射频器件增多,测试空间日渐狭小,使得业界开始纷纷尝试OTA(Over The Air)测试。

OTA测试也被称作“空口测试”。众所周知,天线是信号到自由空间的转换器接口,大天线封装孔径一般大于1/2波长,小天线一般小于1/2波长。由于电磁场的特性与天线的距离密切相关,所以天线测试一般又分为近场测试和远场测试。

进一步细分的话,场区又会被分为“反应区”和“辐射区”,反应区里电场和磁场的能量最强,电磁波相对较弱;远场基本是真正意义上的电磁波辐射了,辐射形式不会随着距离改变,它在大气中以3亿米/秒的速度传播, 两者之间被称之为“过渡区”。

实验室中毫米波的测试需要在吸波暗室中进行, 测试设备主要包括RF测试设备和吸波暗室,前者主要包括信号发生器,频谱仪和矢量分析仪等,暗室使用CATR(紧凑场)还是DFF(直接远场)一般根据波长来决定。此外,实验室一般还会进行波束成型测试和温度测试。泰瑞达旗下的LitePoint仪表可以为毫米波测试提供完整测试方案。

而如果走出实验室,面对UE(用户设备)的制造测试时,流程将主要包括以下三部分:

1.SMT PCBA的校准和测试;

2.毫米波模组的校准和测试;

3.最终成品的测试验证。

但显然,真正待测的5G设备不会只有区区几台,未来几年内将有数十亿台5G设备面世,这就使蜂窝无线设备的大批量生产测试比以往更加复杂,如果不精打细算,无线测试的成本将会进一步提升。因此,5G毫米波芯片在量产中的测试策略,主要包括如下流程:

1. 晶圆测试:需要使用到ATE和探针台。主要包括CW毫米波功能测试,DC/Digital/BIST和5G RAN三温测试等。主要目的是在早期阶段验证芯片性能,最大限度帮助提高良率;

2. 天线封装模块测试(AiP 或 AoB):主要包括毫米波天线的X-RAY检测,AiP和AoB天线的装配良率测试和不同频带的多单元测试。要求毫米波天线装配0 DPPM。

3. OTA模块连接测试:需要使用到ATE Handler。OTA模块的测试需要高质量的Socket来满足毫米波的测试需求。主要包括偶极子天线和贴片天线的连通性测试,有限的功能测试和多单元测试。要求保证毫米波天线辐射性能0 DPPM。

4. OTA模块功能测试:需要使用到OTA的Socket或者屏蔽盒。主要包括OTA远场或近场测试,完全的功能测试,远场的波束成型测试(验证corner芯片的远场性能),5G RAN的多单元和三温测试。保证了毫米波模块的功能指标0 DPPM。

5. 系统板上OTA测试:属于系统级测试。需要OTA远场测试,完全的功能测试,波束成型和多单元测试,这一环节中可以写入校准参数。保证了毫米波模块和天线的整体性能达标。

6. 最终成品OTA测试:也是系统级的测试。需要进行远场测试,完全功能测试,所有载波单元的EVM测试,波束成型校准,载波聚合测试 和5G RAN的多单元和三温测试。保证毫米波和天线的整体性能,写入最终的校准参数,确保0 RMA。

其中,CP测试、OTA连通测试和最终成品OTA测试,是大规模量产中必须包含的。泰瑞达的UltraFlex 毫米波板卡和LitePoint IQgig5G在不同的测试阶段可以提供相应的毫米波测试解决方案。

泰瑞达提供的UltraWaveMX44和UltraWaveMX20板卡只需使用测试设备中的单个插槽,可以基于安装基数很庞大的UltraWave24测试系统实现升级。进行升级时也无需调整系统配置,因此可实现利用同一个测试系统完成对4G和5G毫米波芯片的测试,从而能够将新兴毫米波应用的半导体器件更快推向市场。

结语

5G,尤其是毫米波时代的来临,正在改变传统的芯片测试场景。它要求ATE机台既要具备从OTA测试、天线阵列测试到覆盖Sub-6GHz和毫米波全频段的测试能力,又对上市时间、测试成本和测试指标提出了更严苛的标准。作为全球领先的测试厂商,泰瑞达正与生态系统合作伙伴一起,针对5G无线标准最新设备的特性分析和量产测试,打造全面解决方案。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 封装技术
    +关注

    关注

    12

    文章

    595

    浏览量

    69157
  • FR-
    FR-
    +关注

    关注

    0

    文章

    2

    浏览量

    18352
  • 毫米波
    +关注

    关注

    21

    文章

    2013

    浏览量

    67497
  • 5G
    5G
    +关注

    关注

    1366

    文章

    49073

    浏览量

    590251

原文标题:5G毫米波改变芯片测试

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    科普|浅谈毫米波在PTCRB认证中的应用

    毫米波,早些年应用于军事场景较为广泛,现在伴随5G技术逐渐走进大众视野,走进民用通信。俗称FR2,当然这个是3GPP在定义毫米波的时候给出的技术标准分类,随着6G技术的研发推进,也越来
    的头像 发表于 12-10 15:23 67次阅读
    科普|浅谈<b class='flag-5'>毫米波</b>在PTCRB认证中的应用

    5G毫米波射频软排线至电路板连接器技术解析

    Molex 5G毫米波射频软排线至电路板连接器为高速 (15GHz) 射频应用提供高信号完整性性能。Molex 5G毫米波射频软排线至电路板连接器提供稳固的垂直插配和PCB空间节省功能
    的头像 发表于 11-21 11:18 303次阅读

    科普|5G毫米波专网牌照,意义何在?

    前几天,有媒体报道,工信部即将向数家公司发放我国第二批毫米波专网频率许可牌照。这引起了业界的广泛关注。今天这篇文章,小枣君打算给大家做一个深入解读。█什么是5G毫米波专网牌照?5G
    的头像 发表于 10-14 18:07 1033次阅读
    科普|<b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>专网牌照,意义何在?

    5G与6G:从“万物互联“到“智能无界“的跨越

    段(700MHz)、中频段(2.6GHz、3.5GHz)和高频段(毫米波) 部署:SA(独立组网)与NSA(非独立组网)两种模式 5G的典型应用场景 5G的\"高速率、低延迟、大连
    发表于 10-10 13:59

    广和通5G毫米波商用进程提速

    当你在10秒内下载一部10GB的高清电影时,当体育赛事的8K直播毫无延迟时,当无人机在千米高空被精准定位时——5G毫米波应用正悄然走进我们的生活。在垂直行业如港口、制造业、电网等多个垂直行业,企业
    的头像 发表于 09-26 13:41 6163次阅读

    科普|看懂毫米波雷达,这一篇就够啦!

    /5G,电磁频率在0.7-4.9GHz之间。毫米波的频率比它要高1-2个数量级。比毫米波频率更高一级的,则是太赫兹(THz)频段。根据“波长×频率=光速”的公式,毫
    的头像 发表于 07-26 04:06 1456次阅读
    科普|看懂<b class='flag-5'>毫米波</b>雷达,这一篇就够啦!

    看懂毫米波雷达,这一篇就够啦!

    /5G,电磁频率在0.7-4.9GHz之间。毫米波的频率比它要高1-2个数量级。比毫米波频率更高一级的,则是太赫兹(THz)频段。根据“波长×频率=光速”的公式,毫
    的头像 发表于 07-09 19:02 1791次阅读
    看懂<b class='flag-5'>毫米波</b>雷达,这一篇就够啦!

    ALN4300-02-2335毫米波低噪声放大器WENTEQ

    系统:适合于5G和未来6G通信的毫米波频段,为高速度数据通讯提供保障。卫星通讯:在卫星通信系统中,低噪声放大器是接收链路的关键器件,能够放大微弱的下行信号,提高信号质量。机载雷达:应用于雷达接收器前端
    发表于 06-19 09:14

    Leadway测试级铠装精密稳相毫米波线缆(110GHz)

    测试,如卫星载荷验证与电子战系统校准。应用场景l 5G/6G通信测试:用于毫米波频段的基站测试
    发表于 05-19 09:53

    是德频谱分析仪N9021B毫米波信号测量技巧与校准方法

    是德N9021B矢量信号分析仪作为一款高性能毫米波测试设备,在5G通信、雷达、卫星通信等领域发挥着关键作用。以下是针对该仪器的毫米波信号测量技巧与校准方法的详细指南,帮助用户提升
    的头像 发表于 04-29 10:33 630次阅读
    是德频谱分析仪N9021B<b class='flag-5'>毫米波</b>信号测量技巧与校准方法

    5G毫米波专网重塑英特尔成都工厂AMR系统

    在工业智能化加速发展的今天,5G 技术正成为关键驱动力。然而,基于公网的工业 5G 方案在时延、可靠性和覆盖能力方面仍存在瓶颈,影响了部分应用场景的稳定性和实时性。作为突破性技术,5G 毫米波
    的头像 发表于 04-08 09:24 1147次阅读
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>专网重塑英特尔成都工厂AMR系统

    ALN4000-10-3530毫米波低噪声放大器WENTEQ

    ℃~+125℃ 应用领域 雷达系统:用于毫米波雷达的前端信号放大,提升探测距离和精度。 卫星通信:作为接收机的前置放大器,提高信号接收质量。 5G/6G 通信:支持毫米波频段的基站和终
    发表于 03-12 09:30

    CHA3218-99F低噪声放大器适合5G通信吗?

    的严格需求,但具体是否完全契合还需依据实际的应用场景和频段规范来综合考量。 优势 广泛的频率覆盖:5G通信涵盖了从Sub-6GHz到毫米波等多个频段。CHA3218-99F的工作频段为2-18GHz
    发表于 02-14 09:42

    华为发布5G-A毫米波万兆网络

    ,黑龙江联通与华为携手合作,成功部署了基于毫米波和C-Band 3CC(三载波聚合)技术的5G-A万兆网络。这一网络通过毫米波与Sub-6GHz(低于6GHz的5G频段)的高低频协同组
    的头像 发表于 02-11 09:39 1302次阅读

    ALN3750-13-3335毫米波低噪声放大器WENTEQ

    ALN3750-13-3335毫米波低噪声放大器WENTEQALN3750-13-3335毫米波低噪声放大器是毫米波通信系统中的核心组件,专为高频信号放大而设计,尤其适用于5G及未来6
    发表于 02-11 09:32