0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何制作一个简易的Sigma Delta ADC?

电子森林 来源:电子森林 作者:电子森林 2021-04-01 10:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文为备战电赛的案例之一,涉及到的知识技能:

FPGA的使用

ADC的原理及构成

PWM的产生

比较器的应用

数字滤波器的使用

使用的平台:

多数FPGA芯片上没有ADC的功能,而一些应用则需要用到ADC对一些模拟信号,比如直流电压等进行量化,有没有特别简单、低成本的实现方法呢?

在要求转换速率不高的情况下,完全可以借助一颗高速比较器(成本只有几毛钱)来实现对模拟信号的量化,Lattice的官网上一篇文章就介绍了如何制作一个简易的Sigma Delta ADC,如果FPGA能够提供LVDS的接口,连外部的高速比较器都可以省掉。由于我们的小脚丫FPGA核心模块在设计的时候没有考虑到LVDS的应用场景,所以还是需要搭配一个高速的比较器来实现Lattice官网上推荐的简易Sigma Delta ADC的功能。

让小脚丫FPGA通过锁相环PLL运行于120MHz的主时钟(还可以更高,提速到240MHz、360MHz都应该没有问题),测试1KHz以内的模拟信号是没有问题的。

Lattice的官网上就可以下载到简易Sigma Delta ADC的Verilog源代码,可以非常方便地用在其它品牌、其它系列的FPGA上。

下面的截图就是采用120MHz的主时钟实现的对1KHz模拟信号的采样,并通过DDS/DAC输出,口袋仪器M2000采集并显示的模拟信号波形。

b31525ca-9245-11eb-8b86-12bb97331649.png

M2000口袋仪器显示的1KHz的波形

工作原理

详细的工作原理介绍可以参考项目https://www.eetree.cn/project/detail/255 及项目页面中的参考资料,在这里以几幅图片来示例一下。

b32101f6-9245-11eb-8b86-12bb97331649.png

简易Sigma Delta ADC的工作原理

b3503caa-9245-11eb-8b86-12bb97331649.png

直接连接 - 被测模拟信号的幅度范围为0-3.3V

b35b174c-9245-11eb-8b86-12bb97331649.png

通过电阻分压网络输入,并在比较器+端提供参考电压,则被采集模拟信号的电压变化范围可以扩展

b36482a0-9245-11eb-8b86-12bb97331649.png

简易Sigma Delta ADC的性能与逻辑电路的工作频率

b36d37f6-9245-11eb-8b86-12bb97331649.png

在不同的FPGA平台上消耗的逻辑资源

以下就是我们的电赛综合训练板上简易Sigma Delta ADC部分的电路连接

b379f7e8-9245-11eb-8b86-12bb97331649.png

核心代码:

顶层调用代码:

wire [7:0] sd_adc_out; // sigma delta adc data output

wire sample_rdy; // flag for adc conversion

ADC_top my_adc(.clk_in(clk_hs),.rstn(1‘b1),.digital_out(sd_adc_out), .analog_cmp(comp_in),.analog_out(ad_pwm),.sample_rdy(sample_rdy));

assign dac_data = sd_adc_out;assign dac_clk = clk_hs; //120MHz generated by PLL

Sigma Delta ADC顶层程序

//*********************************************************************//// ADC Top Level Module////*********************************************************************

module ADC_top ( clk_in, rstn, digital_out, analog_cmp, analog_out, sample_rdy);

parameter ADC_WIDTH = 8, // ADC Convertor Bit PrecisionACCUM_BITS = 10, // 2^ACCUM_BITS is decimation rate of accumulatorLPF_DEPTH_BITS = 3, // 2^LPF_DEPTH_BITS is decimation rate of averagerINPUT_TOPOLOGY = 1; // 0: DIRECT: Analog input directly connected to + input of comparitor // 1: NETWORK:Analog input connected through R divider to - input of comp.

//input portsinput clk_in; // 62.5Mhz on Control Demo boardinput rstn; input analog_cmp; // from LVDS buffer or external comparitor

//output portsoutput analog_out; // feedback to RC networkoutput sample_rdy;output [7:0] digital_out; // connected to LED field on control demo bd.

//**********************************************************************//// Internal Wire & Reg Signals////**********************************************************************wire clk;wire analog_out_i;wire sample_rdy_i;wire [ADC_WIDTH-1:0] digital_out_i;wire [ADC_WIDTH-1:0] digital_out_abs;

assign clk = clk_in;

//***********************************************************************//// SSD ADC using onboard LVDS buffer or external comparitor////***********************************************************************sigmadelta_adc #( .ADC_WIDTH(ADC_WIDTH), .ACCUM_BITS(ACCUM_BITS), .LPF_DEPTH_BITS(LPF_DEPTH_BITS) )SSD_ADC( .clk(clk), .rstn(rstn), .analog_cmp(analog_cmp), .digital_out(digital_out_i), .analog_out(analog_out_i), .sample_rdy(sample_rdy_i) );

assign digital_out_abs = INPUT_TOPOLOGY ? ~digital_out_i : digital_out_i;

//***********************************************************************//// output assignments////***********************************************************************

assign digital_out = ~digital_out_abs; // invert bits for LED display assign analog_out = analog_out_i;assign sample_rdy = sample_rdy_i;

endmodule

Sigma Delta ADC主程序

//*********************************************************************//// SSD Top Level Module////*********************************************************************

module sigmadelta_adc ( clk, rstn, digital_out, analog_cmp, analog_out, sample_rdy);

parameter ADC_WIDTH = 8, // ADC Convertor Bit PrecisionACCUM_BITS = 10, // 2^ACCUM_BITS is decimation rate of accumulatorLPF_DEPTH_BITS = 3; // 2^LPF_DEPTH_BITS is decimation rate of averager

//input portsinput clk; // sample rate clockinput rstn; // async reset, asserted lowinput analog_cmp ; // input from LVDS buffer (comparitor)

//output portsoutput analog_out; // feedback to comparitor input RC circuitoutput sample_rdy; // digital_out is readyoutput [ADC_WIDTH-1:0] digital_out; // digital output word of ADC

//**********************************************************************//// Internal Wire & Reg Signals////**********************************************************************reg delta; // captured comparitor outputreg [ACCUM_BITS-1:0] sigma; // running accumulator valuereg [ADC_WIDTH-1:0] accum; // latched accumulator valuereg [ACCUM_BITS-1:0] counter; // decimation counter for accumulatorreg rollover; // decimation counter terminal countreg accum_rdy; // latched accumulator value ’ready‘

//***********************************************************************//// SSD ’Analog‘ Input - PWM//// External Comparator Generates High/Low Value////***********************************************************************

always @ (posedge clk)begin delta 《= analog_cmp; // capture comparitor outputend

assign analog_out = delta; // feedback to comparitor LPF

//***********************************************************************//// Accumulator Stage//// Adds PWM positive pulses over accumulator period////***********************************************************************

always @ (posedge clk or negedge rstn)begin if( ~rstn ) begin sigma 《= 0; accum 《= 0; accum_rdy 《= 0; end else begin if (rollover) begin // latch top ADC_WIDTH bits of sigma accumulator (drop LSBs) accum 《= sigma[ACCUM_BITS-1:ACCUM_BITS-ADC_WIDTH]; sigma 《= delta; // reset accumulator, prime with current delta value end else begin if (&sigma != 1’b1) // if not saturated sigma 《= sigma + delta; // accumulate end accum_rdy 《= rollover; // latch ‘rdy’ (to align with accum) endend

//***********************************************************************//// Box filter Average//// Acts as simple decimating Low-Pass Filter////***********************************************************************

box_ave #( .ADC_WIDTH(ADC_WIDTH), .LPF_DEPTH_BITS(LPF_DEPTH_BITS))box_ave ( .clk(clk), .rstn(rstn), .sample(accum_rdy), .raw_data_in(accum), .ave_data_out(digital_out), .data_out_valid(sample_rdy));

//************************************************************************//// Sample Control - Accumulator Timing// //************************************************************************

always @(posedge clk or negedge rstn)begin if( ~rstn ) begin counter 《= 0; rollover 《= 0; end else begin counter 《= counter + 1; // running count rollover 《= &counter; // assert ‘rollover’ when counter is all 1‘s endendendmodule

数字低通滤波器模块,做平滑滤波

//*********************************************************************//// ’Box‘ Average //// Standard Mean Average Calculation// Can be modeled as FIR Low-Pass Filter where // all coefficients are equal to ’1‘。////*********************************************************************

module box_ave ( clk, rstn, sample, raw_data_in, ave_data_out, data_out_valid);

parameter ADC_WIDTH = 8, // ADC Convertor Bit PrecisionLPF_DEPTH_BITS = 4; // 2^LPF_DEPTH_BITS is decimation rate of averager

//input portsinput clk; // sample rate clockinput rstn; // async reset, asserted lowinput sample; // raw_data_in is good on rising edge, input [ADC_WIDTH-1:0] raw_data_in; // raw_data input

//output portsoutput [ADC_WIDTH-1:0] ave_data_out; // ave data outputoutput data_out_valid; // ave_data_out is valid, single pulse

reg [ADC_WIDTH-1:0] ave_data_out; //**********************************************************************//// Internal Wire & Reg Signals////**********************************************************************reg [ADC_WIDTH+LPF_DEPTH_BITS-1:0] accum; // accumulatorreg [LPF_DEPTH_BITS-1:0] count; // decimation countreg [ADC_WIDTH-1:0] raw_data_d1; // pipeline register

reg sample_d1, sample_d2; // pipeline registersreg result_valid; // accumulator result ’valid‘wire accumulate; // sample rising edge detectedwire latch_result; // latch accumulator result

//***********************************************************************//// Rising Edge Detection and data alignment pipelines////***********************************************************************always @(posedge clk or negedge rstn)begin if( ~rstn ) begin sample_d1 《= 0; sample_d2 《= 0; raw_data_d1 《= 0; result_valid 《= 0; end else begin sample_d1 《= sample; // capture ’sample‘ input sample_d2 《= sample_d1; // delay for edge detection raw_data_d1 《= raw_data_in; // pipeline result_valid 《= latch_result; // pipeline for alignment with result endend

assign accumulate = sample_d1 && !sample_d2; // ’sample‘ rising_edge detectassign latch_result = accumulate && (count == 0); // latch accum. per decimation count

//***********************************************************************//// Accumulator Depth counter////***********************************************************************always @(posedge clk or negedge rstn)begin if( ~rstn ) begin count 《= 0; end else begin if (accumulate) count 《= count + 1; // incr. count per each sample endend

//***********************************************************************//// Accumulator////***********************************************************************always @(posedge clk or negedge rstn)begin if( ~rstn ) begin accum 《= 0; end else begin if (accumulate) if(count == 0) // reset accumulator accum 《= raw_data_d1; // prime with first value else accum 《= accum + raw_data_d1; // accumulate end end //***********************************************************************//// Latch Result//// ave = (summation of ’n‘ samples)/’n‘ is right shift when ’n‘ is power of two////***********************************************************************always @(posedge clk or negedge rstn)begin if( ~rstn ) begin ave_data_out 《= 0; end else if (latch_result) begin // at end of decimation period.。. ave_data_out 《= accum 》》 LPF_DEPTH_BITS; // 。.. save accumulator/n result endend

assign data_out_valid = result_valid; // output assignment

endmodule

原文标题:如何在FPGA上用一个比较器实现ADC的功能?

文章出处:【微信公众号:FPGA入门到精通】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1656

    文章

    22290

    浏览量

    630398
  • adc
    adc
    +关注

    关注

    100

    文章

    7435

    浏览量

    553836

原文标题:如何在FPGA上用一个比较器实现ADC的功能?

文章出处:【微信号:xiaojiaoyafpga,微信公众号:电子森林】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    深入解析ADS1202:高性能Delta-Sigma调制器的全面指南

      在电子工程领域,模数转换器(ADC)是连接模拟世界和数字世界的关键桥梁。而德州仪器(TI)的ADS1202作为款高性能的Delta-Sigma调制器,在众多应用中展现出了卓越的性能。今天,我们
    的头像 发表于 12-05 11:19 363次阅读
    深入解析ADS1202:高性能<b class='flag-5'>Delta-Sigma</b>调制器的全面指南

    低功耗Sigma-Delta ADC模数转换器

    与传统的逐次逼近型(SAR)ADC不同,Sigma-Delta ADC采用了过采样和噪声整形技术。其核心原理可通俗理解为:它并不追求单次采样的绝对准确,而是以远高于信号频率的速度进行高速采样,随后
    的头像 发表于 12-03 14:23 89次阅读

    深入剖析ADS1203:高性能Delta-Sigma调制器的设计与应用

      在电子设计领域,模数转换器(ADC)是连接模拟世界和数字世界的关键桥梁。而Delta-Sigma调制器作为种特殊的ADC架构,以其高分辨率、低噪声等优势,在众多应用场景中得到了广
    的头像 发表于 12-03 11:21 243次阅读
    深入剖析ADS1203:高性能<b class='flag-5'>Delta-Sigma</b>调制器的设计与应用

    深入解析ADS1208:二阶Delta - Sigma调制器的卓越性能

    的应用场景,成为众多工程师的首选。今天,我们就来深入剖析这款调制器。 文件下载: ads1208.pdf 、产品概述 ADS1208是款专为霍尔传感器及类似应用优化的二阶Delta - S
    的头像 发表于 12-02 09:51 215次阅读
    深入解析ADS1208:二阶<b class='flag-5'>Delta</b> - <b class='flag-5'>Sigma</b>调制器的卓越性能

    深度剖析ADS1205:高性能Delta-Sigma调制器的卓越之选

      在电子设计领域,模数转换器(ADC)的性能对系统的整体表现起着关键作用。TI的ADS1205作为款高性能的双通道Delta-Sigma调制器,凭借其出色的特性和广泛的应用场景,成为了众多工程师
    的头像 发表于 12-01 14:26 281次阅读
    深度剖析ADS1205:高性能<b class='flag-5'>Delta-Sigma</b>调制器的卓越之选

    ADS1675 24 位 4MSPS 高精度模数转换器(ADC)产品手册总结

    该ADS1675是种高速、高精度的模数转换器(ADC)。采用先进的三角标准(delta-sigma,)架构,运行速度可达4MSPS,交流性能和直流精度均为卓越。
    的头像 发表于 11-24 13:49 316次阅读
    ADS1675 24 位 4MSPS 高精度模数转换器(<b class='flag-5'>ADC</b>)产品手册总结

    分享Sigma Delta型模数转换器(高精度ADC工作原理)

    Sigma Delta型模数转换器又称Σ-Δ型模数转换器,模数转换器(ADC)作为连接物理世界与数字系统的关键部件,广泛应用于工业控制、汽车电子和物联网设备中。其中,Σ-Δ型模数转换器凭借其高分辨率和优良的抗噪性能,成为高精度测
    的头像 发表于 11-10 17:25 568次阅读

    笙泉高精度24位ADC (MAD2402)新上市,赋能精准量测

    逼近型(SAR)、Delta-Sigma、流水线型 (Pipelined)和双斜率型 (Dual-slope)…等。这当中SAR ADC是属于高速且相较低分辨率,Delta-Sigma ADC
    发表于 07-04 13:28

    如何判断ADC芯片的类型?

    1:如何判断ADC芯片的类型?SAR ADC,流水线ADC,Sigma-Delta(ΣΔ)ADC,不同类型的
    发表于 04-15 06:19

    有没有采用sigma-delta原理的AD芯片推荐

    Other Parts Discussed in Thread: ADS1204请大家推荐款采用sigma-delta原理的AD芯片,我已有ADS1204这款芯片,但是后面的数字滤波处理起来总是出问题。决心找款已经把数字滤
    发表于 01-20 07:42

    有几个关于ADC电路layout的疑问求解

    我有几个关于ADC电路layout的疑问。 很多工程师建议delta-sigma类型的AD芯片的数字地引脚和模拟地引脚都接到模拟地,通信接口用数字隔离器隔离。 这意思就是说AD芯片要放在模拟地平
    发表于 01-10 07:04

    使用ADS1278做一个更新率10Khz的数据采集卡,群延迟的参数很大怎么处理?

    ,忽略传输延迟,ADC的输出的每一个数据点都至少延迟了38/fdata = 0.38ms。这样的延迟对我的应用来说,是不可以接受的。 我的理解正确吗? 我需要实时性强的ADC,是不是sigm
    发表于 01-02 08:31

    对于1位量化的Sigma-delta调制器来说,As和SNR和DR分别是什么关系?

    公式不太样,只知道DR应该是最大SNR,举例子比如是3阶调制器,OSR=256,这3值如何计算? 2.对于MASH结构,SNR如何计算? 3. 不同阶的Sigma-delta框图中有的带有延时
    发表于 01-02 08:04

    想做一个采集设备,请问选用什么样的ADC和DAC合适?

    想做一个采集设备,采集信号为4-20mA,1到5V DC ,0-10VDC ,三种信号,要求精度不低于0.1%,刷新率为 25ms。在做一个输出 4-20mA,1到5V DC ,0-10VDC ,请问选用什么样的ADC 和DA
    发表于 12-17 08:16

    请问为ADC选Driver主要要看哪几项技术指标呢?

    我的项目中需要为ADC款驱动器,目前我的ADC准备采用ADS1259,看到有款差分放大器THS4551,其中的Applications中有24-Bit,
    发表于 12-16 06:00