0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多光子显微镜成像计数:无标记成像在发育生物学中的应用

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:20 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

光学成像可用于发育生物学,从而了解生物体的形成、揭示组织再生机制、认识并管理先天性缺陷和胚胎衰竭等。其中最受关注的两个问题:一是心脏在早期发育中会发生剧烈的形态变化,其潜在功能和生物力学方面仍有待研究;二是中枢神经系统发育异常会导致先天性的疾病,所以需要从动力学、功能和生物力学等方面对大脑发育过程进行了解。

许多光学显微镜都依靠使用荧光标记物来对特定分子或物质进行标记然后成像。但是荧光标记有标记不均匀、光漂白、荧光剂干扰细胞功能、荧光剂无法标记小分子等问题。所以,无标记成像对于发育生物学十分重要。

表1列出了多种应用于发育生物学的无标记成像:OCT为光学相干层析成像,OCM为光学相干显微镜,RM为拉曼显微镜,BM为布里渊显微镜,SHGM为二次谐波显微镜,THGM为三次谐波显微镜,OPT为光学投影层析成像,PAT为光声层析成像,PACT为光声计算机断层扫描,PAM为光声显微镜,QPI为定量相位成像。

表1 应用于发育生物学的无标记成像 [1]OCT是一种基于低相干性干涉测量法的光学成像技术, 主要应用于组织结构、脉管系统、血液循环和生物力学的成像。其分辨率1-15 um,成像深度在1-2 mm量级,具有非侵入式、无预处理、快速成像、实时3D建模评估等优点。OCT可分为时域OCT和频域OCT(图1)。时域OCT利用光程匹配的组织反射光与参考光的干涉信号成像,因此需要调节参考镜的位置来扫描不同深度的组织信息。频域OCT的参考镜是固定的,仅通过测量组织反射光和参考光叠加后的光谱并作傅里叶变换,即可获得与时域OCT相同的结果。相较于时域OCT,频域OCT的灵敏度和成像速度均大幅提升。

图1. 时域OCT与频域OCT的原理示意图 [2]OCM是OCT和共聚焦显微镜相结合的产物(图2), 主要应用于细胞结构和组织结构的成像。相较OCT,OCM的对比度来源更丰富,空间分辨率也更高,3D分辨率达到1-2 ?m的同时可保持约0.5 mm的成像深度。OCM常用于植入前发育的胚胎成像。鉴于OCM与OCT相同的对比机制,也可用于功能性OCM成像,例如血管造影。

图2. 一种OCM的示意图 [3]RM主要应用于生物分子的成像, 对于胚胎成像,RM可提供非常丰富的分子信息。例如,在植入前阶段,脂质在胚胎发育中起重要的代谢作用。RM可以对脂质液滴的数量和空间分布进行长期的评估,从而进一步表征脂质在胚胎发育中的功能。BM是一种基于探测布里渊散射的非线性成像方法, 主要应用于生物力学成像。布里渊散射是光在介质中受到各种元激发的非弹性散射,其频率变化表征了元激发的能量。与拉曼散射不同的是,布里渊散射涉及的是能量较小的元激发,如声学声子和磁振子等。光波与千兆赫兹频率的声波(声子)相互作用,所产生的光频移反映了样品的高频弹性模量。因此,BM可用于测量材料的弹性性能,对于探测胚胎的韧性(刚度)具有很高的价值。SHG过程对有序的非中心对称分子结构具有高度特异性,因此可为某些细胞和组织成分(如胶原蛋白、微管和肌球蛋白)提供清晰的成像对比度,这对胚胎评估非常有用。例如,SHG显微镜可用于对果蝇胚胎的肌肉结构和气管系统成像。以及用于小鼠胚胎心脏中纤维结构的3D成像,显示了心脏纤维含量和组织的时间变化和空间异质性(图3)。

图3. 胚胎第8.5天时小鼠胚胎心脏中的纤维结构的SHG成像。(A) 整个心脏的SHG图像的3D重建,包括原始心房、原始心室和流出道;(B、C) (A)中所示位置的横截面图;(D-F) (A)中所示位置:(D) 流出道和(E、F) 心室的放大图像;(F)在心脏表面以下15米处。[1]THG通常发生在折射率失配的结构界面处。对于胚胎成像,THG显微镜主要用于提供高分辨率的结构信息。另外,由于THG信号能够很好地描绘细胞膜,THG显微镜还可用于细胞追踪,包括探测秀丽隐杆线虫胚胎的早期细胞分裂以及测量青蛙胚胎的血流速度。光学投影层析成像(OPT)与CT原理相同(图4)。首先得到样品在不同方向上的投影数据,然后经计算机重建得到样品的三维结构。OPT成像模式有两种:透射OPT(或明场OPT),其对比度来自样品的光吸收;发射OPT,其对比度来源于样品的自发荧光信号或荧光染色剂信号。基于荧光的OPT是研究整个胚胎中3D基因表达模式的重要方法,基于无标记吸收的OPT则主要用于了解器官的形态,用于胚胎的定量形态成像。无标记OPT也被用于早期人类胚胎的成像,着眼于大脑发展,表明神经系统中的许多结构都可以在3D模式下被识别。

图4. 计算机断层扫描技术(CT)原理示意图。[4]PAT的原理为光声效应:当激光照射组织时,组织会吸收激光的能量,温度上升并膨胀。当目标组织被周期性强度调制的激光照射时,则会发生周期性的热胀冷缩,从而发出超声波。光声成像检测的便是组织受光激发产生的超声信号。在成像过程中,组织受激光照射热胀冷缩,在组织内部形成了一个初始声场。超声换能器在组织周围接收传播出来的声波,利用声波信号和相应的重建算法,反向重建出初始声场,从而得到组织的激光吸收率分布图像(图5)。而且,由于样品内部不同深度位置的声信号到达样品表面的超声信号存在时间差异,利用时间分辨技术可获得不同层析面的光声信号,由此可重建3D的光声图像。

图5. PAT的原理示意图。[5]PAT不仅是非侵入式,无需标记的成像方法,还结合了光学高对比度和声学高分辨率的优势。通过施加不同的光波长,PAT还有极其丰富的对比度来源,如血红蛋白、黑色素、DNA / RNA、脂质和水。利用氧合和脱氧血红蛋白的不同吸收光谱,PAT不仅可以进行脉管系统的结构成像和血液循环功能成像,还可以进行氧饱和度和耗氧代谢成像。相衬显微镜技术用于弱散射或吸收光的生物样品(例如植入前的胚胎)。基于透射明场显微镜,通过相干光干涉来探测相衬,从而分辨出相对透明的细胞成分。定量相位成像(QPI)作为一种先进的相衬显微镜技术已被用于不同类型的细胞,并在了解神经网络组织、同时评估细胞运动和生长以及测量细胞力学方面得到了应用。以上这些用于发育生物学的无标记成像模式之间存在相似的成像功能,接着比较一下它们针对特定应用的差异:OCT和OPT均可用于组织结构和形态的成像,且都有微米水平的分辨率。其中OPT具有更高的成像深度,能够覆盖整个大尺寸胚胎,而OCT由于成像深度的限制,仅限于探测靠近表面的组织结构。不过,OCT可用于活体动态成像,OPT则不适合。对于血管成像,PAT直接测量血红蛋白的光吸收,可以从组织内部深处进行体积重建,而OCT通过功能性血流分析只能以相对有限的深度实现脉管系统成像。但OCT的优势是能够对脉管系统和高分辨率组织结构同时成像,这点PAT难以实现。对于胚胎组织的生物力学成像,基于OCT的弹性成像需要适当的负荷(loading)才能传递到目标位置。对于心脏,主动收缩力是自然负荷,使OCT能够评估心脏壁的应变和应变率。但是,对于其他器官或组织,OCT的生物力学成像可能会因缺乏合适的负荷(suitable loading methods)而受到限制。与OCT不同,BM进行生物力学成像,不需要外部负荷(loading),理论上能够应用于任何可收集布里渊散射光的胚胎组织。发育过程是非常多样的,单一类型的成像只能提供有限的信息。以上部分成像方式虽存在相似的功能但各有优势,所以将不同的成像方式结合在一起的多模态成像方法前景广阔。往期精彩:

超快非线性光学技术之一:如何增加拉曼孤子的自频移范围

非线性光学成像之二:用于非线性成像的孤子自频移光源

多光子显微镜成像之三:相干反斯托克斯拉曼散射(CARS)显微技术

参考文献: [1] SHANG WANG, IRINA V. LARINA, KIRILL V. LARIN. Label-free optical imaging in developmental biology [Invited] [J]. Biomedical Optics Express. 2020, 11(4): 2017~2040. [2] Drexler W, et al. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014;19(7):071412. [3] K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017). [4] Pahlm O, Wagner GS: Multimodal Cardiovascular Imaging: Principles and Clinical Applications: www.accessmedicine.com [5] Wikipedia. https://en.wikipedia.org/wiki/Photoacoustic_imaging.

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    306

    浏览量

    32153
  • 显微镜
    +关注

    关注

    0

    文章

    715

    浏览量

    25143
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    超景深显微镜在材料的应用

    超景深显微镜显微成像领域的关键技术突破,通过特殊光学设计与先进图像处理算法,实现大景深成像,单一视场即可获取整体清晰的样本图像,大幅提升显微
    的头像 发表于 11-11 18:03 1114次阅读
    超景深<b class='flag-5'>显微镜</b>在材料<b class='flag-5'>学</b><b class='flag-5'>中</b>的应用

    共聚焦显微镜(LSCM)的关键参数解析

    共聚焦显微镜作为一种高分辨率三维成像工具,已在半导体、材料科学等领域广泛应用。凭借其精准的光学切片与三维重建功能,研究人员能够获取纳米尺度结构的高清图像。下文,光子湾科技将系统解析共聚焦显微镜
    的头像 发表于 11-04 18:05 315次阅读
    共聚焦<b class='flag-5'>显微镜</b>(LSCM)的关键参数解析

    共聚焦显微镜与荧光显微镜有何区别?

    在现代微观分析检测技术体系,共聚焦显微镜与荧光显微镜是支撑材料科学、工业质检及生命科学领域的核心成像工具。二者均以荧光信号为检测基础实现特异性标记
    的头像 发表于 10-23 18:05 546次阅读
    共聚焦<b class='flag-5'>显微镜</b>与荧光<b class='flag-5'>显微镜</b>有何区别?

    一文读懂共聚焦显微镜的系统组成

    共聚焦显微镜作为半导体、材料科学等领域的重要成像设备,其核心优势在于突破传统光学显微镜的焦外模糊问题。光子湾科技深耕光学测量领域,其共聚焦显微镜
    的头像 发表于 10-16 18:03 282次阅读
    一文读懂共聚焦<b class='flag-5'>显微镜</b>的系统组成

    共聚焦显微镜精准成像的使用技巧

    共聚焦显微镜的核心使用技巧围绕“如何优化成像质量”展开,涵盖四大关键内容:一是成像参数的动态调控,需在亮度、分辨率与成像速度间找到适配平衡;二是针对弱荧光、易淬灭等不同特性的样品,提供
    的头像 发表于 09-25 18:03 626次阅读
    共聚焦<b class='flag-5'>显微镜</b>精准<b class='flag-5'>成像</b>的使用技巧

    共聚焦显微镜和电子显微镜有什么区别?

    在现代科研与高端制作领域,微观探索依赖高分辨率成像技术,共聚焦显微镜与电子显微镜是其中的核心代表。在微观检测,二者均突破传统光学显微镜局限
    的头像 发表于 09-18 18:07 624次阅读
    共聚焦<b class='flag-5'>显微镜</b>和电子<b class='flag-5'>显微镜</b>有什么区别?

    共聚焦显微镜原理:纳米级成像技术的关键

    在微观世界,细节决定成败。共聚焦显微镜技术,作为一项突破性的成像技术,正引领着纳米级成像的新纪元。它不仅提供了前所未有的高分辨率和对比度,而且能够在无需样品预处理的情况下,清晰地揭示
    的头像 发表于 08-05 17:55 1250次阅读
    共聚焦<b class='flag-5'>显微镜</b>原理:纳米级<b class='flag-5'>成像</b>技术的关键

    超景深显微镜技术:拓展微观形貌表征分析新维度

    微观结构的精确测量是实现材料性能优化和器件功能提升的核心,超景深显微镜技术以其在测量的高精度和高景深特性,为材料科学界提供了一种新的分析工具,用以精确解析微观世界的复杂结构。美能光子湾将带您了解超
    的头像 发表于 08-05 17:54 1169次阅读
    超景深<b class='flag-5'>显微镜</b>技术:拓展微观形貌表征分析新维度

    为什么说高光谱成像是“超级显微镜”?背后的原理竟如此神奇

    为什么说高光谱成像是“超级显微镜
    的头像 发表于 07-22 13:31 859次阅读

    VirtualLab Fusion应用:用于高NA显微镜成像的工程化PSF

    Exp. 2012]。通过这种工程化的PSF,甚至可以观察到物体的微小散焦,即与传统的成像方法相比,可以大大提高轴向分辨率。 我们通过在VirtualLab Fusion应用商业显微镜镜头
    发表于 03-26 08:47

    超景深3D检测显微镜技术解析

    显微镜在观察高纵深样本时,往往难以同时保持所有层面的清晰度,而上海桐尔的技术通过精密的光学系统设计和焦点成像技术,能够在不同深度上捕捉到高质量的图像。随后,通过高效的图像处理算法,将这些二维图像合成
    发表于 02-25 10:51

    VirtualLab Fusion案例:单分子显微镜高NA成像系统的建模

    随着生物和化学领域新技术的出现,对更精确显微镜的需求稳步增加。因此,研制出观察单个荧光分子的单分子显微镜。利用快速物理光学建模和设计软件VirtualLab Fusion,我们可以模拟普遍用于单分子
    发表于 01-16 09:52

    VirtualLab Fusion案例:高NA反射显微镜系统

    摘要 在单分子显微镜成像应用,定位精度是一个关键问题。由于在某一方向上的定位精度与图像在同一方向上的点扩散函数(point spread function, PSF)的宽度成正比,因
    发表于 01-16 09:50

    VirtualLab Fusion案例:高NA傅里叶单分子成像显微镜

    1.摘要 傅里叶显微术广泛应用于单分子成像、表面等离子体观测、光子晶体成像等领域。它使直接观察空间频率分布成为可能。在高NA傅里叶显微镜中,
    发表于 01-15 09:39

    透镜成像在显微镜中的应用

    显微镜是科学领域中不可或缺的工具,它允许我们观察到肉眼无法分辨的微观世界。从生物学到材料科学,显微镜的应用广泛而深远。 显微镜的基本构造 显微镜
    的头像 发表于 12-25 16:49 1718次阅读