0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

胶囊机器人是如何完成深度学习与算法训练的?

新机器视觉 来源:3D先临三维数字化与3D打印 作者:SHINING 2020-08-28 15:23 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一颗胶囊大小的胃肠道内窥镜机器人,被服下后,通过体外磁控的方式实现在消化道中的运动,途经食道、胃部、肠部,最后被人体排出。这个过程中,电脑可以同步显示胃肠道的相关检测数据,从而让医生有依据地完成诊断。

(图片来源:2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS))

听起来好像很简单,而实际上胶囊机器人在投入使用前,必须先经过深度学习和训练。就像游戏玩家出发去升级打怪需要游戏装备和地图一样,胶囊机器人需要通过深度学习技术改善密集地形重建和姿态估计算法,以及通过SLAM( Simultaneous Localization and Mapping)同步定位与地图构建的机器视觉技术实现检测、识别能力。

通俗一点讲,机器人不是人,它的视觉和决策能力,都需要研制者通过一些方法赋予给它。通过深度学习获得的能力相当于胶囊机器人的大脑,而通过SLAM机器视觉获得的就相当于胶囊机器人的“火眼金睛”。

2000年,以色列研制的第一个胶囊内镜获得FDA批准进入临床,当时的胶囊机器人是随消化道的自然蠕动而前进的,由于没有经过深度学习训练,也没有SLAM技术的加持,有点像盲人摸象,对于像胃这样大的消化道器官,其观察范围十分有限,因此会造成相当大的漏检。

土耳其伊斯坦布尔的Bogazici大学的生物医学工程专业,有一个专业的生物医学实验室,其研究领域包括生物医学仪器、生物电子学、生物力学、神经信号分析、生物光子学、医学成像、细胞成像和电生理学、机器人技术、医疗设备设计和测试,以及心理物理学等。

2020年,该实验室的Mehmet Turan博士,通过TUBI TAK2232国际杰出研究人员研究金方案获得了资金支持,开展了一项名为“磁性驱动的Al-Powered内窥镜胶囊机器人用于靶向药物传递和多活检操作”的研究项目。该项目旨在利用人工智能的最新进展,在无线胶囊内窥镜(WCE)机器人的机电一体化设计、远程磁控以及定位和映射算法方面进行重大的科技创新。

在该项目中,研究人员基于1个胶囊内镜图像的基础SLAM数据集,1只Panda机械臂,1台EinScan Pro 2X(先临三维品牌的3D扫描仪),2个具有不同相机特性的商用胶囊机器人,对体外猪胃肠道的数据进行了采集,并完成了算法测试和胶囊机器人的深度学习与训练。

研究人员把器官固定在六个支架上,创造出L形、Z形和O形三种胃肠道形态,以模拟通过升结肠到横结肠的GI-牵引路径。EinScan Pro 2X的功能就是3D扫描获取这六个器官形态的点云数据。所收集的数据结果,需要满足两点:使SLAM数据集适合于迁移学习;此外,还可以对同一器官类型的具有不同纹理细节的组织进行算法性能测试。

由于被扫描的物体本身明暗多变,柔软易变形,一开始并不顺利。先临三维的技术人员在了解项目情况后,为研究人员及时提供了3D扫描仪的操作指导,包括如何通过亮度调整应对明暗变化,如何使用标志点辅助数据高精度拼接,选择哪一种无毒无害的医用显影剂可以帮助进一步改善数据细节,以及面对不同的情况如何选择合适的扫描模式。

最终,我们很高兴地看到,研究人员如愿以偿获取到了六组高精细的3D数据,如实记录了器官所有结构、角落和深度。

然后,原始点云数据被进一步编辑,得到了色谱图。

这些数据都被用于胶囊机器人的深度学习和算法训练。Bogazici大学的研究人员使用胶囊内镜图像的基础SLAM数据集作为输入,然后利用此次3D扫描获取的三维模型在SLAM数据集中确定定位。

研究组的Mehmet Turan博士说:“在以前的一个研究项目中,我使用过另一个品牌的3D扫描仪。那款3D扫描仪也很好,但是与EinScan Pro 2X相比,在分辨率和点精度上存在技术差异。点精度是我们此次项目实现深度学习过程的最重要因素之一,这就是为什么团队最终决定依靠EinScan Pro 2X的能力来完成这个项目的原因。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4761

    浏览量

    97160
  • SLAM
    +关注

    关注

    24

    文章

    456

    浏览量

    33190
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123920

原文标题:胶囊机器人是如何完成深度学习与算法训练的?EinScan Pro 2X带你了解SLAM机器视觉

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    机器人看点:智元机器人公司完成股改 湃特纳机器人完成数千万元A轮融资

    给大家带来一些机器人行业的消息: 智元机器人公司完成股改 智元机器人上市在即?据企查查APP信息显示智元机器人公司已
    的头像 发表于 11-10 14:28 1010次阅读

    特斯拉Optimus百团队采集训练数据,人形机器人仍全靠遥控?

    ,甚至能完成一般无法完成的杂技动作。   而在机器人硬件基础逐步提高的前提下,也就成为了机器人“大脑”开发的基石,真正让人形
    的头像 发表于 11-05 09:11 5544次阅读
    特斯拉Optimus百<b class='flag-5'>人</b>团队采集<b class='flag-5'>训练</b>数据,人形<b class='flag-5'>机器人</b>仍全靠遥控?

    如何在NVIDIA Isaac Lab中使用Newton训练四足机器人

    物理在机器人仿真中发挥着至关重要的作用,它为机器人在真实环境中的行为及交互提供了精准的虚拟呈现基础。借助仿真器,研究人员和工程师能够以安全、高效且经济的方式训练、开发、测试和验证机器人
    的头像 发表于 10-13 11:10 1540次阅读
    如何在NVIDIA Isaac Lab中使用Newton<b class='flag-5'>训练</b>四足<b class='flag-5'>机器人</b>

    工业机器人的特点

    生产可以提高产品品质。通过设定相同的程序,机器人可实现重复操作,保证了产品的标准化;在精细化生产方面,工业机器人可实现低于0.1毫米的运动精度,可以完成精细的雕刻工作。提高产出 由于机器人
    发表于 07-26 11:22

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    视觉巡线,展示了如何从数据采集、模型训练机器人部署的完整流程。 值得注意的是,深度学习模型的实时性对机器人计算资源提出了较高要求,优化模型
    发表于 05-03 19:41

    【「# ROS 2智能机器人开发实践」阅读体验】机器人入门的引路书

    ROS的全称:Robot Operating System 机器人操作系统 ROS的 目的 :ROS支持通用库,是通信总线,协调多个传感器 为了解决机器人里各厂商模块不通用的问题,让机器人快速开发
    发表于 04-30 01:05

    禾赛科技联手群核科技,打造高精度机器人仿真训练新方案

    SpaitalLM、空间智能解决方案 SpatialVerse 的深度融合,实现毫米级 3D 空间建模与物理属性智能标注,打造机器人高保真空间快速训练解决方案。此次合作将显著降低机器人
    的头像 发表于 04-29 17:03 1598次阅读
    禾赛科技联手群核科技,打造高精度<b class='flag-5'>机器人</b>仿真<b class='flag-5'>训练</b>新方案

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    非常重要的地位。 先说这个自主机器人的计算系统。计算系统是自主机器人的关键部件。自主机器人通过智能计算系统与物理世界交互,自主地完成任务。通常会包括几个关键的模块,分别是传感模块,感知
    发表于 01-04 19:22

    《具身智能机器人系统》第10-13章阅读心得之具身智能机器人计算挑战

    阅读《具身智能机器人系统》第10-13章,我对具身智能机器人的工程实践有了全新认识。第10章从实时性角度剖析了机器人计算加速问题。机器人定位中的SLAM
    发表于 01-04 01:15

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    中取得了令人瞩目的效果。 阅读感悟 从传统的手动编程到借助大模型实现智能化、自主化,从单一模态的交互到多模态信息的深度融合,再到扩散模型的应用,机器人控制技术正在以惊人的速度进化。这不仅让机器人在工业
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    讲解如何构造具身智能基础模型的方法和步骤,包括数据采集、预处理、模型训练和评估等。 在第四部分,介绍了具身智能机器人的计算挑战,包括计算加速、算法安全性和系统可靠性等内容。 最后,在第五部分介绍了一个
    发表于 12-27 14:50

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景中,协作机器人面临的主要挑战是快速适应新工艺流程。具身智能通过在线
    发表于 12-24 15:03

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    ,数据对于训练增强和优化机器人能力的深度学习模型至关重要。 从财务上讲,用户数据对互联网公司具有重要价值,估计每个用户 600 美元,考虑到大规模商业化后每个
    发表于 12-24 00:33

    【「具身智能机器人系统」阅读体验】+初品的体验

    学习资源,以培养更多的专业人才。随着具身智能机器人技术对社会的影响越来越大,该书还可以向公众普及相关的知识,以提升社会对新技术的认知和接受度,从而为技术的发展创造良好的社会环境。 随着具身智能机器人技术
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    搜索策略等规划算法,强调了轨迹规划需要考虑机器人的运动学约束。在轨迹规划中,机器人需要同时考虑最大曲率、加速度限制等物理约束,生成平滑可行的运动轨迹。强化学习在规划控制中的应用也很有创
    发表于 12-19 22:26