0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子机器学习是如何实现的

倩倩 来源:36氪 2020-03-25 16:13 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近日,Google 宣布推出量子机器学习开源库 TensorFlow Quantum。

这一开源库集成了 Google 之前开源的量子计算框架 Cirq 和机器学习框架 TensorFlow。Cirq 提供了一个软件模拟器来运行量子算法,不要求开发者必须有一台真实的量子计算机。而 TensorFlow 是一个封装了底层深度学习模型的软件库。简言之,不管是 Cirq 还是 TensorFlow,都是为了降低新技术门槛而生。借助这些开源工具,开发者可以更快更省地打造量子计算或机器学习应用。

Google 现在把两者结合了起来,能让开发者利用经典或者量子数据,快速打造一个混合的量子-经典模型原型,以期推动量子计算和机器学习社区发现更能发挥量子优势的新算法。

虽然量子计算和机器学习都是技术热词,但分属完全不同的领域。两者为什么能结合在一起?量子计算能给机器学习带来什么?一切要从经典数据和量子数据的区别说起。

跳出 0 和 1 的局限

所谓经典数据和经典模型,都是相对于量子而言。现在流行的计算机被称为经典计算机,信息量的基本单位是比特,在二进制中取值不是 0 就是 1。

而遵循量子力学规律打造的计算机被称为量子计算机,信息量的基本单位是量子比特,在取值前处于不确定状态,即叠加态。也就是说,量子比特可以同时处于 “0” 和 “1” 的状态。

有人做过一个比喻:经典比特是 “开关”,只有开和关两个状态(0 和 1),而量子比特是 “旋钮”,就像收音机上调频的旋钮那样,有无穷多个状态。经典计算机通过操纵经典比特进行运算,而量子计算机是操纵量子比特,本质上就是去旋转它们。

量子叠加这种特性决定了在同样比特数量的情况下,量子比特能存储比经典比特更多的信息。

比如,把 1 个“0”和 1 个“1”放在一起,会有 4 个组合状态:00、01、10、11。2 个经典比特只能是其中 1 种状态,而 2 个量子比特可以同时包含这 4 个状态,并且每个状态都有一定的权重。

只有当人们去读取量子比特时,同时包含 4 个状态的量子比特才会变化为其中一个状态。正是由于这种叠加的特性,量子计算机具备了强大的并行计算能力。

▲(“薛定谔的猫” 就是解释量子叠加的一个思想实验)

除了叠加,量子还有个特性是“纠缠”。纠缠性可以让多个量子比特共享状态,创造出 “超级叠加” 的量子并行计算,计算能力随比特数增加呈指数级增长。

理论上,拥有 300 个量子比特的量子计算机,瞬间所能执行的并行计算次数比宇宙中的原子总数还多。

对于量子计算的并行性,微软 CEO Satya Nadella 在 2017 年微软 Ignite 大会上,用找迷宫出口来比喻解释:

为了找到迷宫的出口,经典计算机先开启一条搜索路径,遇到障碍物后会沿原路返回。之后再次探寻新路,直到遇障返回或找到了正确出口。虽然最终能找到一个结果,但这种方法相当耗时。

对比之下,量子计算机解锁了神奇的并行性。它们同时探寻玉米迷宫中的每一条路。因此,量子计算机可能指数级减少解决问题的步骤。

中国科学院院士潘建伟也曾说:“如果传统计算机的速度是‘自行车’,那么量子计算机的速度就是‘飞机’。”

这种远远超过经典计算机的计算性能,正是机器学习所需要的。众所周知,当下这次以机器学习方法为代表的人工智能浪潮,是算力、算法和数据相结合的结果。

如果机器学习任务无法快速计算完成,那么经济价值就无法得到体现。当前,企业和学界普遍采用 GPUFPGA 等适合并行计算的通用芯片来实现加速,但这些方法依然是基于经典计算机。

速度远远超越经典计算机的量子计算机,自然而然和机器学习联系起来。

量子机器学习是如何实现的

早在 1995 年,美国路易斯安那州立大学 Kak 教授首先提出了“量子神经计算”的概念。而后,量子聚类、量子深度学习和量子向量机等算法相继被提出。2015 年,潘建伟教授团队在小型光量子计算机上,首次实现了量子机器学习算法 。

事实上,已有的量子机器学习算法主要可细分为 3 类。第一类,机器学习的整体计算依然采用经典计算机,但把比较复杂的计算转换成量子版本,用量子计算机来运行。

▲(图片来自《量子机器学习算法综述》

第二类是“寻找量子系统的力学效应、动力学特性与传统机器学习处理步骤的相似点,将物理过程应用于传统机器学习问题的求解,产生出新的机器学习算法”。第三类,则是借助机器学习力去研究量子系统。

目前,对量子机器学习的研究大多集中在第一类。在具体的执行层面上,要用量子计算机来运行经典机器学习复杂计算的部分,首先要把经典数据转换成量子数据。

然后把量子数据输入量子计算机,用量子算法计算完成后输出。由于输出的计算结果依然是量子叠加态的,所以最后还需要进行测量,把经典数据提取出来。

虽然量子计算的特性和机器学习非常契合,但整体而言量子机器学习还处于初级阶段。并且,不是所有的经典机器学习算法都可以用量子计算加速。

量子机器学习算法实用化的硬件条件也还没有成熟。据科技日报报道,在通用量子计算机建造成功之前,量子机器学习算法很难在实际应用中展现出其数据处理方面的强大能力。

这次开源 TensorFlow Quantum 的 Google,也是一直在打造自己的量子计算机。2019 年 10 月 23 日,Google 在 Nature 上刊登了关于 “实现量子优越性” 的论文 ,他们制造出了 53 个量子比特数的量子计算机,计算能力超经典超级计算机。同样的计算量,量子计算机用 200 秒就完成了,而目前最强的经典超级计算机,要花费 10000 年才能完成。

“量子优越性” 是指量子计算机可以完成经典计算机无法做到的事情。这个概念最早由加州理工学院理论物理教授 John Preskill 在 2012 年提出。

▲(Google CEO 桑德尔·皮蔡和量子计算机)

Google 用 53 个量子比特实现了“量子优越性”是一个里程碑式的事件,但离通用量子计算机的要求(通常认为需要 100 万个量子比特)还是很遥远。尽管如此,依然有越来越多学术机构和公司投入到了量子机器学习领域。并且,在一些具体的场景(如图像分类),量子机器学习也已经被证明了其可行性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Google
    +关注

    关注

    5

    文章

    1801

    浏览量

    60274
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • 量子计算
    +关注

    关注

    4

    文章

    1163

    浏览量

    36318
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    量子竞赛进入深水区:IBM加速2029年容错量子计算机目标实现

    电子发烧友网综合报道 日前,IBM宣布入选美国国防部下属国防高级研究计划局(DARPA)量子基准测试计划(QBI)的B阶段,这标志着该公司在构建大规模容错量子计算机的技术路径上获得关键验证。这一
    的头像 发表于 11-16 00:28 6513次阅读

    量子机器学习入门:三种数据编码方法对比与应用

    在传统机器学习中数据编码确实相对直观:独热编码处理类别变量,标准化调整数值范围,然后直接输入模型训练。整个过程更像是数据清洗,而非核心算法组件。量子机器
    的头像 发表于 09-15 10:27 491次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>机器</b><b class='flag-5'>学习</b>入门:三种数据编码方法对比与应用

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2640次阅读

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    电子发烧友网报道(文/李弯弯)量子计算是一种基于量子力学原理的新型计算模式,其核心在于利用量子比特的叠加态和纠缠态特性,实现远超经典计算机的并行计算能力。   何为
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    玻色量子重磅发布量子奇点计划

    学习到实践的一站式服务。“量子奇点计划”旨在以实用化量子计算为核心,构建全链路产业生态创新体系,探索实用化量子计算产学研用新路径。
    的头像 发表于 05-09 16:14 794次阅读

    北理工实现量子全息显微技术突破

    近日,北京理工大学物理学院张向东教授课题组在量子显微成像领域取得了重要进展,成功实现了基于偏振纠缠量子全息技术的量子全息显微。这一研究成果以“Quantum Holographic
    的头像 发表于 02-19 10:43 1087次阅读

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 627次阅读

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器学习模型部署在资源受限的设备(如微
    的头像 发表于 01-25 17:05 1220次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    【一文看懂】什么是量子计算?

    量子计算代表了一种突破性的计算方法,它利用量子力学的基本原理,能够在某些复杂问题上实现超越传统计算机的计算能力。从药物研发到气候模拟,量子计算在多个领域展示了巨大的潜力。但
    的头像 发表于 01-02 14:08 2154次阅读
    【一文看懂】什么是<b class='flag-5'>量子</b>计算?

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1983次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 701次阅读

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器学习
    的头像 发表于 12-20 09:11 1631次阅读

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠效应进行信息传递的新型通信方式。它基于
    的头像 发表于 12-19 15:53 2150次阅读

    量子通信的基本原理 量子通信网络的构建

    量子通信的基本原理 1. 量子叠加原理 量子叠加原理是量子通信的基础之一。在量子力学中,一个量子
    的头像 发表于 12-19 15:50 3575次阅读

    如何在低功耗MCU上实现人工智能和机器学习

    人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的解决方案。
    的头像 发表于 12-17 16:06 1296次阅读