0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

热钱不断涌入自动驾驶行业,一场合纵连横后的大战爆发在即

浙大光电 来源:陈年丽 2019-08-29 09:51 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

热钱还在不断涌入自动驾驶行业,一场合纵连横后的大战爆发在即。

无论是通用-本田-Cruise、丰田-Uber,还是大众-福特-Argo、现代起亚-亚马逊-Aurora、Waymo-雷诺日产联盟或是百度,都有希望在这场战争中称王。

而激光雷达公司,将有望成为这些巨头们背后最大的「兵工厂」。

寻找激光雷达行业应用的「金矿」

自 2007 年以来,Velodyne 开始为全球大大小小的自动驾驶项目提供激光雷达。

截止今年 3 月的数据,Velodyne 激光雷达销量已经突破 3 万台,销售额达到 5 亿美元(约合 34.5 亿人民币)

——这个销量,在全球范围内超过所有竞争对手的出货量总和,覆盖的应用范围主要包括自动驾驶、测绘、工业港口、物流和安防等领域。

然而,这还不是激光雷达最大的金矿。

今年 6 月,法雷奥对外透露:已经从四家全球主流车企获得总价值约为 5 亿欧元(约合 38.7 亿元人民币)的订单。

这些订单的生命周期预计将延续至 2024 年到 2025 年,并最终可能带来总值 10 到 15 亿欧元的长期业务(即可追加的订单)。

目前,法雷奥的 4 线产品 ScaLa(第一代)是达到车规级应用标准的激光雷达,且已实现量产,并于 2017 年开始装配到拥有 L3 级自动驾驶功能的 A8 车型上。

现在来看,激光雷达最终被安装到两类汽车上:

一类是进行自动驾驶测试的无人车,这个市场对激光雷达的线数要求高,愿意开出更高的价格,但是订单规模小;

一类是汽车厂商推出的具有辅助驾驶、自动驾驶功能的量产车,因为面向消费者,所以订单量大。但这类车对激光雷达的体积、大小和可靠性期望非常高,往往会要求激光雷达获得各种认证

对于第二类市场来说,为了保证系统拥有更多安全冗余,汽车厂商更有愿意在激光雷达驱动的 ADAS 系统上买单。

多数主流车企表示,在 2025-2030 年间,他们能够承受的激光雷达价格在 1000 美金之内。

全球范围内的激光雷达公司,正在朝这一目标推进。

一个趋势是,不少激光雷达公司在为自动驾驶公司提供解决方案的同时,也开始部署更多 ADAS 功能,试图成为 L2/L3 级自动驾驶方案中的补偿选项。

以摄像头为核心的 ADAS 系统,依然有局限

一直以来,特斯拉 CEO Elon Musk 都将激光雷达当成「异端」。

他甚至直言:激光雷达对自动驾驶而言是徒劳无益的;激光雷达是一种又贵又没必要的产品。

果真如此吗?

佐思产研研究总监周彦武在一篇名为:《ADAS 漫谈:为什么自动驾驶必须用激光雷达》的文章中,解释了以摄像头为核心的 ADAS 和自动驾驶系统有诸多局限:

首先,视场角(Field of View,FOV) 角度过大导致车辆有非常明显的盲区。

FOV 一般是越大越好,但要考虑到畸变的问题。一般 CMOS 传感器镜头 FOV 不超过 76 度。超过 76 度是广角镜头,广角镜头在近处有明显失真;超过 120 度则是鱼眼镜头,图像边缘有严重失真。

为了解决 FOV 的问题,沃尔沃和特斯拉选择了三目系统。

沃尔沃的三目系统,FOV 视角分别是 140 度、45 度和 34 度。特斯拉 FOV 为 150 度、50 度和 25 度。但这个系统依然解决不了近距离盲区问题。

其次,车辆在低速情况下,单目摄像头系统对突然出现的静止目标或缓慢移动目标(一般是行人)基本无效。

Mobileye 明确指出 50 公里/时以上行人识别才工作。为何需要如此高的速度?

这是因为,机器视觉主要针对动态目标识别,特别是汽车领域,优先识别动态目标如车辆、行人、自行车、电动车等。

了解上述背景后,我们才能理解激光雷达在自动驾驶系统中所扮演的角色,才会明白为什么汽车行业总强调:

做到 99% 的识别率还不够,我们需要达到 99.99999……% ——而激光雷达就是小数点后几位的最强保障。

在这种情况下,激光雷达的首要价值,便是作为摄像头和毫米波雷达之外的安全冗余。

2017 年,奥迪推出号称全球首款 L3 级别自动驾驶车型奥迪 A8,这款车型也让行业关注到全球第一款为量产车准备的激光雷达——法雷奥 ScaLa。

目前业内主流的 ADAS 方案使用的是 Mobileye 提供的视觉芯片。

虽然 Mobileye 对车道线及车辆尾部识别的准确度较高,但对部分形状奇特,具有本土特色的改装车、三轮车等车型,系统仍旧无法进行匹配识别。

毫米波雷达分辨率不足、对非金属类物品存在一定漏检几率,无法保证车辆精准判断自身及周围障碍物的位置关系。

奥迪 A8 搭载的法雷奥 ScaLa 激光雷达则解决了上述问题。

这也在一定程度上可以解释:为什么在去年 11 月,一向以视觉为主的 Mobileye 斥资千万美元收购了一家激光雷达相关的公司 Eonite Perception。

这是一家专门开发利用激光雷达进行 3D 地图绘制和跟踪的软件。依托 Eonite Perception 的工程师,Mobileye 成立激光传感器部门——LiDAR.AI

正如这个部门的命名,这起收购将加强 Mobileye 在激光雷达领域的技术,弥补 Mobileye 在视觉领域的不足。

过去,Mobileye 的 ADAS 系统依赖摄像头,但现在包括车企、科技巨头等在内的自动驾驶公司更偏好使用激光雷达。

因为激光雷达能在任何光照条件下准确绘制出汽车运行的区域,结合摄像头和雷达,自动驾驶汽车就能清楚了解实时路况。

激光雷达公司开始注重 ADAS 功能的开发

「市场正在发生改变,我们现在要将一部分精力分给 ADAS 终端。」今年 3 月,Velodyne 创始人 David Hall 对外界表示。

他认为,Velodyne LiDAR 在 L4/L5 市场有自己的优势,现在的情况下 Velodyne 的产能足够满足用户需求。

而 ADAS 市场即将迎来新的热潮,在这里 Velodyne 的激光雷达能收获丰厚的利润,因此守着 Level 4/5 市场并非明智之举。

在今年的 CES 上,Velodyne 发布近距离激光雷达产品 VelaDome。

这款产品可以覆盖车辆整个侧面的近距离范围,对车辆近距离/死角处的行人或者自行车检测效果显著。

Velodyne 还希望将自己的激光雷达结合软件打入 ADAS 市场,从而拿出像特斯拉 AutoPilot 和通用 Super Cruise 一样有竞争力的 ADAS 方案。

激光雷达软件系统 Vella 就是这一背景下推出的产品。 Vella 主要配合 Velodyne 的固态激光雷达 Velarray 使用,而后者能够嵌入安装在汽车挡风玻璃后面或者保险杠位置。

Velodyne 称,「相较于摄像头+毫米波雷达系统,其实现的 ADAS 性能将发生革命性变化。」

进军 ADAS 市场,考虑到产品迭代与性能全面性的问题,Velodyne 还通过收并购来扩大商业版图:

今年 7 月,Velodyne 收购位于旧金山的高精地图创业公司 Mapper.ai 的知识产权资产,双方将合作开发更安全的 ADAS 系统。Mapper.ai 的高精地图和定位技术将加速 Vella 软件的开发。

这起收购看起来与 Mobileye 收购 Eonite Perception 有异曲同工之妙。

目前,Velodyne 的这套解决方案可让客户解锁 ADAS 的更多功能,包括行人和自行车避让、车道保持辅助(LKA)、自动紧急制动(AEB)、自适应巡航控制(ACC)、交通堵塞辅助(TJA)等等。

Luminar CEO Austin Russell 对现在的激光雷达也有自己的判断。

在他看来,Waymo 等公司引领的自动驾驶出租车和卡车项目一时半会还不成气候,因此未来几年 ADAS 市场更具吸引力。

今年 6 月,Luminar 推出了一个整合硬件和软件的激光雷达平台 Iris(虹膜)。

为了打造这套解决方案,Luminar 调动了 60 位软件工程师进行配合研发。Iris 平台分为两个版本:

用于高级驾驶辅助系统(ADAS)的激光雷达解决方案,成本不超过 500 美元;

用于高级别自动驾驶(L4/L5)的方案,成本不超过 1000 元。

Luminar 的车载激光雷达和软件将于 2022 年开始大规模交付,其中新款激光雷达体积只有现在产品三分之一,而且能无缝整合进量产车前格栅、车顶或车头大灯中。

2018 年 8 月,Cepton 牵手日本最大汽车照明灯公司 Koito,为后者提供定制的小型激光雷达解决方案,将激光雷达安装进车灯中。

Cepton 与 Koito 的合作,也主要是从 ADAS 开始展开,并将延伸到更高级的自动驾驶;与 May Mobility(低速园区车)的合作则是面向 L4 级自动驾驶。

三年前,Innoviz 就对外推出了两款 MEMS 固态激光雷达样品:InnovizPro 和 InnovizOne。

InnovizPro 是一款基于 MEMS 扫描技术的高性能固态解决方案,可为汽车、测绘和其他应用提供出色的性能和价值。

InnovizOne 则是一款易于车辆无缝集成的车规级解决方案,可为 3 级到 5 级自动驾驶提供 3D 感知能力。2021 年,宝马决定将在 Level 3 级自动驾驶汽车上使用 InnovizOne 激光雷达。

从过去高举高打主推 L4/L5 级自动驾驶,到如今开发更多带有 ADAS 功能的激光雷达解决方案,激光雷达公司通过产品「下沉」的方式,调整自己的市场策略:

在软件层面,更加注重 ADAS 功能,开发杀手级应用(例如给激光束编码);

在硬件层面,既有适用于 L3 及以下的激光雷达方案,又有适合 L4/L5 级自动驾驶的产品。

这么做的目的,激光雷达公司按照激光雷达技术既有路线和发展速度,推出符合市场需求的产品。另一方面,配合一线主机厂和 Tier1 循序渐进推动自动驾驶演进。

为主动安全而生,激光雷达本质是 3D 传感器

通过加入激光雷达来提高 ADAS 系统的安全冗余——这就引申出激光雷达的出路:足够便宜,能进入前装。如此,激光雷达就能获得宝贵的装车机会。

这实际上带来的是双重好处:

首先,投入的资金实际上由消费者分担(当然消费者也获得更好的 ADAS 功能和体验);

其次,真实场景替代仿真,获取真正的海量数据。

为了让车厂更容易接受激光雷达,并降低后者对量产车型安装激光雷达的难度,激光雷达公司提供 ADAS 功能供车企使用,也就成了顺理成章的选择。

由于激光雷达点云是 3D 立体的,包含了距离、尺寸、位置等信息,数据量相比视觉少,所以激光雷达公司提供 ADAS 功能,技术难度相对会小一些,不需要进行复杂的图像处理。

以博世 MPC2 为例(如上图),其摄像头输出一帧图片是 1920*1080 像素,每帧图片代表 200 万个空间点(每个像素对应的角分辨率是 0.03 度)。

以 Velodyne 128 线激光雷达为例,其角分辨率为 0.2*0.11 度,扫描一周后,点数仅为 23 万个空间点(水平 360 度/0.2 度*垂直 128 像素)。

因而,不需要复杂的图像处理、对算力要求极低,激光雷达可以利用自身嵌入式处理器,完成对 ADAS 算法处理。

十四年前,David Hall 发明的这种新型雷达传感器,在 DARPA 自动驾驶挑战赛中一战成名,也间接助推了自动驾驶的蓬勃发展。

今天,无论是高校、车企、Tier1、科技公司、新创公司在进行自动驾驶相关探索和研发时,都愿意为这个传感器买单。

但这给外界留下了一个刻板的烙印:认为激光雷达就是专门为高级别自动驾驶打造的传感器。

事实上,激光雷达并不专属于 L4/L5 级自动驾驶。

从今天看来,我们可以有新的理解:激光雷达是为智能驾驶、主动安全而生的 3D 传感器。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光雷达
    +关注

    关注

    978

    文章

    4382

    浏览量

    195417
  • 自动驾驶
    +关注

    关注

    791

    文章

    14677

    浏览量

    176705
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    不同等级的自动驾驶技术要求上有何不同?

    化分级》(GB/T 40429-2021),明确了自动驾驶不同等级所设计的技术要点。为什么自动驾驶定要分级?自动驾驶分级考虑了哪些因素?
    的头像 发表于 10-18 10:17 2419次阅读

    无引导线的左转场景下,自动驾驶如何规划轨迹?

    场景下,想要很好地处理好无引导线左转是个非常大的挑战。但想要让自动驾驶汽车满足所有的出行需求,这一场景必须解决,那在无引导线的左转场景下,自动驾驶是如何进行轨迹规划的? 无引导线的左
    的头像 发表于 09-18 09:12 446次阅读
    无引导线的左转场景下,<b class='flag-5'>自动驾驶</b>如何规划轨迹?

    卡车、矿车的自动驾驶和乘用车的自动驾驶在技术要求上有何不同?

    自动驾驶技术也得到了充足的应用,但因应用场景不同,技术的侧重方向也有所区别。今天就来和大家聊聊这个话题。 应用场景:开放道路vs封闭场地 首先要理解的是,自动驾驶所面对的环境决定了它的技术基础。乘用车
    的头像 发表于 06-28 11:38 731次阅读
    卡车、矿车的<b class='flag-5'>自动驾驶</b>和乘用车的<b class='flag-5'>自动驾驶</b>在技术要求上有何不同?

    自动驾驶安全基石:ODD

    和限制下可以正常工作,是自动驾驶安全的核心概念之。   对于人类司机来说,在不同的道路上驾驶的能力也有所区别,比如新手司机在些窄路、山路,或者交通状况复杂的道路上可能会无所适从,人
    的头像 发表于 05-19 03:52 5816次阅读

    新能源车软件单元测试深度解析:自动驾驶系统视角

    的潜在风险增加,尤其是在自动驾驶等安全关键系统中。根据ISO 26262标准,自动驾驶系统的安全完整性等级(ASIL-D)要求单点故障率必须低于10^-8/小时,这意味着每小时的故障概率需控制在亿
    发表于 05-12 15:59

    自动驾驶经历了哪些技术拐点?

    ,到如今以AI为核心驱动的自动驾驶系统,各大车企都在不断加码研发投入,试图在未来市场中占据制高点。那自动驾驶发展至今,经历了哪些技术拐点呢? 自动驾驶系统的发展历程
    的头像 发表于 04-27 15:54 632次阅读
    <b class='flag-5'>自动驾驶</b>经历了哪些技术拐点?

    自动驾驶行业常提的高阶智驾是个啥?

    [首发于智驾最前沿微信公众号]近年来,随着人工智能、大数据、传感器技术及高性能计算平台的迅速发展,自动驾驶行业不断突破。从最初的驾驶辅助系统到最近火热的端到端,再到如今的高阶智驾,智驾
    的头像 发表于 04-18 12:24 863次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>行业</b>常提的高阶智驾是个啥?

    自动驾驶大模型中常提的Token是个啥?对自动驾驶有何影响?

    、多模态传感器数据的实时处理与决策。在这过程中,大模型以其强大的特征提取、信息融合和预测能力为自动驾驶系统提供了有力支持。而在大模型的中,有个“Token”的概念,有些人看到或许
    的头像 发表于 03-28 09:16 994次阅读

    激光雷达技术:自动驾驶的应用与发展趋势

    随着近些年科技不断地创新,自动驾驶技术正逐渐从概念走向现实,成为汽车行业的重要发展方向。在众多传感器技术中,激光雷达(LiDAR)因其独特的优势,被认为是实现高级自动驾驶功能的关键。激
    的头像 发表于 03-10 10:16 1427次阅读
    激光雷达技术:<b class='flag-5'>自动驾驶</b>的应用与发展趋势

    自动驾驶的未来 - 了解如何无缝、可靠地完成驾驶

    。 汽车行业正在向自动驾驶汽车靠拢,其发展势头越来越强,其目标不仅是让驾驶员的生活更简单,而且要消除道路上的碰撞。 自动驾驶汽车已经上路,因为该行业
    的头像 发表于 01-26 21:52 914次阅读
    <b class='flag-5'>自动驾驶</b>的未来 - 了解如何无缝、可靠地完成<b class='flag-5'>驾驶</b>

    2024年自动驾驶行业热点技术盘点

    感知轻地图以及纯视觉等。这些技术的出现,也代表着自动驾驶正从概念走向现实,今天就给大家来盘点2024年自动驾驶行业出现的那些技术热点!   城市NOA:迈向精细化驾驶的关键路径 城市N
    的头像 发表于 01-14 10:48 1160次阅读

    《北京市自动驾驶汽车条例》将实施,智驾普及时代到来?

    近年来,随着自动驾驶技术的迅速发展,全球汽车工业正面临一场深刻的变革。自动驾驶技术不仅能够大幅提升交通安全性和运行效率,还在改善能源利用、优化城市交通治理等方面展现出巨大潜力。
    的头像 发表于 01-04 10:45 988次阅读

    如何实现自动驾驶规控算法的仿真验证

    随着自动驾驶技术的不断进步,市场需求的持续增长,自动驾驶产业迎来广阔的发展前景。L3及以上级别的自动驾驶技术有望逐步落地普及,为人们带来更加安全、便捷、高效的出行体验。
    的头像 发表于 12-30 09:39 1590次阅读
    如何实现<b class='flag-5'>自动驾驶</b>规控算法的仿真验证

    NVIDIA DRIVE技术推动自动驾驶发展

    随着 AI 技术的飞速发展,汽车行业正经历一场深刻而全面的智能化转型。以 NVIDIA DRIVE 技术为核心,NVIDIA 正在推动着自动驾驶技术不断迈向新高度。2025 年,AI
    的头像 发表于 12-29 16:02 1114次阅读