0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

核酸是生物化学与分子生物学的研究重点及依据

微流控 来源:陈年丽 2019-07-21 09:17 次阅读

核酸是遗传信息的携带者和基因表达的物质基础,核酸结构与功能的关系不仅是生物化学与分子生物学学科的研究重点,也是相关遗传性疾病与传染病临床诊断的重要依据。针对核酸的分析方法已在生命科学研究、药物筛选、分子诊断、环境监测等领域取得了迅速的发展。传统的凝胶电泳与聚合酶链式反应等技术存在复杂的操作与试剂的高毒性等缺点,因此需要发展新型的操作简便、快速灵敏的核酸分析方法。

DNA步行器是一类特定DNA结构在链置换或酶催化反应驱动下沿特定轨道定向移动的DNA纳米机器,一般由轨道组件、步行组件和驱动组件所构成。步行组件的不断移动一般是通过设计有偏向的系统状态实现的,从高能态到较低能态的自动转变驱动纳米机器的运行,该过程的实现伴随着能量的消耗。目前,研究人员已设计构建了各种轨道精确、自动运行的DNA步行器,并应用于药物输送、生物分子检测、细胞成像等诸多生物医学领域的应用中。

图1 基于双足DNA步行器的核酸电化学传感器示意图

近期,中国科学院苏州生物医学工程技术研究所研究员缪鹏课题组基于DNA步行器设计了多种针对核酸的超灵敏电化学分析方法。首先设计了基于切刻内切酶催化的电化学传感器,通过在电极界面以不同比例修饰DNA轨道分子与步行分子,在目标分子存在下组装成DNA三角星纳米结构,起始酶切步行反应,通过检测后标记的电信号分子的响应强度实现对目标核酸的检测;接着设计了一个无标记的自行走阻抗传感器,在组装的DNA四面体不同顶点处安置DNA步行器各组件,最终在辅助DNA探针存在条件下,显著改变电极界面的电阻值,从而实现对目标核酸分子的快速简便地检测;随后,进一步设计了双足DNA步行器,首先在合成的金磁复合纳米颗粒表面进行一步链置换聚合反应,生成的单链DNA辅助组装双足DNA步行组件,并与电极界面修饰的DNA分子杂交形成Pb2+依赖型DNAzyme,驱动双足步行,通过检测吸附的银纳米颗粒的溶出伏安响应,实现高灵敏度的核酸检测。这些基于DNA步行器的电化学分析方法不仅可以实现低丰度核酸的特异性检测,还具有反应条件温和、成本低、可扩展性强等优点,在生物分析和基于核酸检测的疾病诊断方面展示出极大的应用潜力。

图2 (A)DNA四面体形成,(B)链置换反应及(C)双足DNA步行的聚丙烯酰胺凝胶电泳验证,(D)循环伏安与(E)交流阻抗谱验证电极界面反应过程

图3 (A)基于双足步行器进行核酸检测的线性扫描伏安图,(B)对应的标准曲线

相关工作得到国家自然科学基金面上项目(81771929)、政府间国际科技创新合作重点专项(2017YFE0132300)、中科院科研装备研制项目(YJKYYQ20170067)等的资助。相应的研究成果已发表(Anal. Chem., 2019, 91, 4953-4957; Electrochem. Commun., 2019, 99, 51-55; Electrochem. Commun., 2019, 101, 1-5; New J. Chem., 2019, 43, 7928-7931)。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2525

    文章

    48069

    浏览量

    739991
  • 驱动
    +关注

    关注

    11

    文章

    1717

    浏览量

    84338

原文标题:苏州医工所在基于DNA步行器的核酸电化学分析中取得进展

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    安森美推出微型模拟前端,能以超低的电流实现超高精度的电化学传感

    CEM102模拟前端(AFE)为生物化学、空气质量、气体和有害化学物质的测量提供超高精度和超低功耗。
    的头像 发表于 04-14 09:05 168次阅读

    液滴微流控技术研究进展综述

    液滴微流控作为一项发展了近二十年的先进技术,由于其高通量、高精度、独立反应等优势,已经被广泛应用于分析化学、材料科学以及分子生物学等多个学科领域。
    的头像 发表于 01-23 09:17 445次阅读
    液滴微流控技术<b class='flag-5'>研究</b>进展综述

    新技术在生物样本冷冻中的应用案例分析

    生物分子等提供了重要的实验手段。   新技术在生物样液氮罐本冷冻中的应用案例分析表明,这些创新方法为生物学研究提供了更高效、可靠和经济的样
    发表于 12-26 13:30

    主轴之奥秘:探索主轴的定义、作用与应用?|深圳恒兴隆机电a

    的关键作用。四、生物学中的主轴应用1、细胞生物学在细胞生物学中,主轴是细胞结构的基石。细胞的形状、运动和分裂都受到主轴的严密控制。本节将深入研究主轴在不同类型细胞中的表现和功能;2、
    发表于 12-11 10:27

    一种用于流体自动控制的微流控晶体管

    目前,微流控技术在分子生物学、合成化学、诊断学和组织工程等领域的应用已经取得了显著的进展。
    的头像 发表于 10-31 11:24 361次阅读
    一种用于流体自动控制的微流控晶体管

    基于双光学频率梳的生物传感器实现生物分子检测

    生物分子的快速、高灵敏度检测对于感染性病原体、生物标志物和污染物的生物传感非常重要。
    发表于 10-07 16:10 230次阅读
    基于双光学频率梳的<b class='flag-5'>生物</b>传感器实现<b class='flag-5'>生物</b><b class='flag-5'>分子</b>检测

    智能器官芯片系统在原位生物分析中的应用综述

    体外生物学模型对于广泛的生物医学研究至关重要,包括药物开发、病理学研究和个性化医疗。
    的头像 发表于 09-22 09:09 765次阅读
    智能器官芯片系统在原位<b class='flag-5'>生物</b>分析中的应用综述

    N杂五元芳烃的非共价成键机制研究

    N杂五元芳烃在生物和药物化学中占有重要地位,它是药物分子的基础结构单元,也是蛋白质、辅酶、生物碱、DNA 等生物
    的头像 发表于 09-20 15:08 403次阅读
    N杂五元芳烃的非共价成键机制<b class='flag-5'>研究</b>

    电压放大器在生物微流控中的应用研究

      生物微流控是一种重要的研究领域,它结合了微纳技术、生物学化学等多个学科,旨在实现对微小流体(通常是尺度在微米到纳米级别的液滴或流体)的操控和控制。在
    的头像 发表于 09-15 14:01 267次阅读
    电压放大器在<b class='flag-5'>生物</b>微流控中的应用<b class='flag-5'>研究</b>

    如何利用工程改造的生物纳米孔实现混合体系中糖分子的结构鉴定呢?

    糖是一类具有重要生物学功能的大分子,具有高度复杂的化学结构。目前,糖的结构解析依赖于传统的色谱法、质谱法和核磁法等结构表征手段。
    的头像 发表于 09-05 10:51 399次阅读
    如何利用工程改造的<b class='flag-5'>生物</b>纳米孔实现混合体系中糖<b class='flag-5'>分子</b>的结构鉴定呢?

    F-P型光流控微腔生物传感器实现超低浓度分子构象变化过程检测

    随着(类)器官芯片等技术的发展及其药筛应用,以及分子尺度细胞生物学基础研究的深入,越来越需要针对单个(干)细胞或单个类器官细胞团簇的代谢等过程,进行快速分子检测,乃至实时在线生化监测。
    的头像 发表于 08-22 09:08 739次阅读
    F-P型光流控微腔<b class='flag-5'>生物</b>传感器实现超低浓度<b class='flag-5'>分子</b>构象变化过程检测

    用于酶催化反应的液滴微流控研究进展综述

    在过去的三十年里,微流控平台的出现改变了传统化学、化工、生物学和材料学的研究范式,已被广泛用于生物化学反应、快速混合和微粒合成等。
    的头像 发表于 06-30 09:08 543次阅读
    用于酶催化反应的液滴微流控<b class='flag-5'>研究</b>进展综述

    巧妙构思实现可再充“生物质电池”联产高值化学

    本工作中,研究人员报道了一种可再充的生物质流动电池,首次将生物质的电催化氧化/还原与电池材料的氧化/还原耦合,基于生物质平台分子糠醛的氧化还
    的头像 发表于 06-16 16:27 1339次阅读
    巧妙构思实现可再充“<b class='flag-5'>生物</b>质电池”联产高值<b class='flag-5'>化学</b>品

    点成方案丨点成生物PCR实验解决方案

    分子生物学技术。该技术由美国的Kary Mullis在1983年发明,由于高度特异性和灵敏度,PCR被广泛应用于基础研究、疾病诊断、农业检测和法医鉴定等领域,而Kary Mullis也因这一发明获得了
    的头像 发表于 06-14 17:01 371次阅读
    点成方案丨点成<b class='flag-5'>生物</b>PCR实验解决方案

    生物分子传感器研究进展

    基于身体的生物分子传感系统,包括可穿戴、可植入和消费电子用传感器,可以进行全面的健康相关监测。
    发表于 05-17 14:28 326次阅读
    <b class='flag-5'>生物</b><b class='flag-5'>分子</b>传感器<b class='flag-5'>研究</b>进展