0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器人有望跨越仿真—现实鸿沟

JsPm_robot_1hjq 来源:yxw 2019-07-11 16:44 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

奔跑、攀援、摔倒、爬起,对于野外动物来说,这些动作是与生俱来的本能。我们人类出生后,掌握这些动作的时间相对慢一些或者需要训练,但作为弥补,我们拥有非常精细的手部运动技能,可以从容操作各种工具。

而众所周知,无论是优雅地行走还是自然地抓取,机器人在这方面的表现一直不尽如人意,步态运动的协调性和机器手的灵巧度一直是业界难题。

但现在,情况正一点点发生变化。

据日前英国《自然》新闻与观点文章称,历经几十年,机器人终于在机器学习的帮助下,开始掌握自然地行走、奔跑和抓物的技能了。这一突破,被认为拉开了具有“物理灵活性”的人工智能时代的序幕,同时,开启了一个“机器人自主时代”。

机器人“活得”比你想的要难

一个机器人的“生命”,是从仿真开始的。

机器人工程师们首先会看引导软件在虚拟世界中是否表现良好,如果令人满意,这个软件就会被放进机器人体内,应用于物理世界。

但在物理世界中,看似很小的障碍都会让机器人陷入困境,他们不可避免地遭遇“真实世界”带来的无数巨大难题——那些无法预测的表面摩擦力、结构柔性、振动,以及机器人自身的传感器延迟、致动器转化不良等等,这一连串障碍,几乎没有一个能用数学模型提前假设。

过去几十年来,工程师其实也在不断尝试通过基于预测性数学模型(经典控制论)的软件,去引导机器人进行肢体活动。然而,这个方法在引导机器人肢体执行行走、攀爬和抓取不同形状物体这类极为简单的任务时,被证明无效。

机器人在仿真环境中即使再应对自如,进入真实的物理世界,也会如懵懂孩童般跌跌撞撞。

机器学习或能弥合仿真与现实差距

当人们已习惯机器人数十年如一日的蹒跚学步,科学家们却突然点亮了希望。

日前,苏黎世联邦理工学院机器人系统实验室团队在《科学·机器人学》上发表最新论文,给出了新证据表明,运用数据驱动法设计的机器人软件,有很大希望解决机器人学和人工智能研究长期面临的巨大难题——仿真与现实之间的差距。

团队演示的方法是将经典控制论与机器学习技术相结合。他们首先设计了一个四足机器人的传统数学模型,并给机器人起名“ANYmal”。接下来,再从引导机器人四肢运动的致动器中收集数据,数据输入多个人工智能神经网络系统,从而建立了第二个模型。

这个机器学习模型,就可以自动预测“AMYmal”机器人的肢体运动。经过训练的神经网络,只要插入第一个模型中,就可以在电脑上仿真运行这个混合模型。

团队发现这种利用数据驱动法设计的软件,大大提高了机器人的运动技能——它速度更快,动作也更精准。而且先将运动策略在仿真器中优化,再转入机器人体内在物理世界进行测试,最后机器人的表现,竟然和仿真表现一样好。

混合模型是变革的第一步

这一成就,被认为是机器人及人工智能的一项重要突破,其预示着,曾经不可逾越的仿真与现实之间的差距正在被消弭。

其也预示着新一轮人工智能的重大变革,而混合模型,正是这场变革的第一步。之后,所有的分析模型都将面临“下岗”。

通过机器人在现实环境中收集到的数据,训练机器学习模型——这一方法也被称为“端到端训练”(end-to-end training)。其正缓慢但坚定地照进现实,在诸如关节式机械臂、多指机械手、无人机,甚至是无人驾驶汽车中得到应用。

或许不久的将来,机器人工程师将不必再“告诉”机器人如何走路、如何抓取,而是让机器人利用自身收集得来的数据,进行自我学习。

不过,现阶段其也存在一定挑战。最重要的就是要优化可扩展性,以确定“端到端训练”是否可以扩展用于引导拥有几十个致动器的复杂机器,譬如类人机器人、制造工厂、智能城市这一类大型系统,进而用数字技术帮助人类切实地提高生活质量。

《自然》观点文章称,对人类来说,当脑中对未来行动的思路越清晰,这个人的自我意识能力也就越高。现如今,机器人已经在学习的路上更进一步,其不仅是一次具有实际意义的突破,让某些工程性劳动得以解放,还标志着科学家们已开启了“机器人自主时代”。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    213

    文章

    30631

    浏览量

    219729
  • 人工智能
    +关注

    关注

    1813

    文章

    49773

    浏览量

    261749

原文标题:机器人有望跨越仿真—现实鸿沟

文章出处:【微信号:robot-1hjqr,微信公众号:1号机器人网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    攻坚农业仿真挑战:Robotec农业机器人仿真平台

    3DGS与4DGS的核心应用实践与技术突破!全球农业正面临粮食需求增长、可持续发展压力及劳动力短缺等多重挑战,农业机器人已从未来愿景变为现实应用。真实环境中测试农业机器人成本高、周期长且存在安全风险,
    的头像 发表于 11-18 17:31 1944次阅读
    攻坚农业<b class='flag-5'>仿真</b>挑战:Robotec农业<b class='flag-5'>机器人</b><b class='flag-5'>仿真</b>平台

    小萝卜机器人的故事

    经过我的申请, 马老师发放了, 小萝卜机器人的, 开发权限, 原来的小萝卜公司, 因为经营不善倒闭, 作为科研产品, 几个技术对此惋惜, 自掏腰包, 要让小萝卜机器人, 再生, 每次听到小萝卜说
    发表于 10-23 05:24

    机器人竞技幕后:磁传感器芯片激活 “精准感知力”

    故障率从 15% 降至 3% 以下。随着磁隧道结 (MTJ) 等新型技术成熟,下一代磁传感器有望实现纳米级精度、皮秒级响应速度,或使机器人 “高速竞速” 最高速度提升 40%;柔性磁传感器研发也将让
    发表于 08-26 10:02

    工业机器人的特点

    的基础,也是三者的实现终端,智能制造装备产业包括高档数控机床、工业机器人、自动化成套生产线、精密仪器仪表、智能传感器、汽车自动化焊接线、柔性自动化生产线、智能农机、3D 打印机等领域。而智能制造装备中工业
    发表于 07-26 11:22

    盘点#机器人开发平台

    Athena机器人****开发平台思岚推出Athena机器人开发平台,有望主导机器人开发平台未来市场-电子发烧友网AUTO CUBEROS机器人
    发表于 05-13 15:02

    【「# ROS 2智能机器人开发实践」阅读体验】+内容初识

    、Gazebo仿真(含RGBD相机/激光雷达仿真)、实物机器人运动控制,实现\"仿真→实物\"的无缝衔接 高阶应用篇(7-9章) 聚焦视觉SLAM、自主导航等前沿场景,提供完整项目链路
    发表于 04-27 11:24

    名单公布!【书籍评测活动NO.58】ROS 2智能机器人开发实践

    Gazebo机器人仿真平台,以RDK X3、RDK X5赋能生态产品——OriginBot智能机器人开源套件为原型讲解,手把手教读者从零构建一个完整的机器人系统。 内容架构 本书共有
    发表于 03-03 14:18

    物理仿真人形机器人的统一全身控制策略

    创建动作自然并对各种控制输入做出智能响应的交互式仿真人形机器人仍是计算机动画和机器人技术领域最具挑战性的问题之一。NVIDIA Isaac Sim等高性能 GPU 加速仿真器以及使用N
    的头像 发表于 01-06 12:31 1635次阅读
    物理<b class='flag-5'>仿真</b>人形<b class='flag-5'>机器人</b>的统一全身控制策略

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主机器人的定位系统,自主机器人
    发表于 01-04 19:22

    NVIDIA技术推动机器人仿真

    借助机器人仿真,开发人员能够在基于物理学的现实世界数字呈现中对机器人进行虚拟训练、测试和验证。
    的头像 发表于 01-03 14:10 774次阅读

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    近年来,人工智能领域的大模型技术在多个方向上取得了突破性的进展,特别是在机器人控制领域展现出了巨大的潜力。在“具身智能机器人大模型”部分,作者研究并探讨了大模型如何提升机器人的能力,大模型存在
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    影响与发展,提供了全球及国内行业趋势的见解。书中详细讨论了这一新兴领域面临的诸多挑战,从应用的不确定性、昂贵的成本到伦理问题,为读者呈现了当前形势的现实视角。 接下来,书中深入探讨了具身智能机器人的历史
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    提供了对机器人环境和动作的统一和详细的理解。只有在这些过程之后,数据才能有效地用于训练 EAI 系统。 目前,应用 Sim2Real 技术的主要障碍是“现实差距”,即模拟环境与现实世界之间的差异,包括物理
    发表于 12-24 00:33

    【「具身智能机器人系统」阅读体验】+初品的体验

    《具身智能机器人系统》 一书由甘一鸣、俞波、万梓燊、刘少山老师共同编写,其封面如图1所示。 本书共由5部分组成,其结构和内容如图2所示。 该书可作为高校和科研机构的教材,为学生和研究人员提供系统
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    将大模型的\"大脑\"装入物理实体的\"身躯\",让AI真正走进现实世界。这种革新不仅体现在稚晖君开源的人形机器人方案,更在“AI教母”李飞飞的VoxPoser
    发表于 12-19 22:26