0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

DeepMind综述无监督学习:通用智能路上的踏脚石,让AI更聪明

人工智能和机器人研究院 来源:YXQ 2019-04-27 09:37 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在过去十年中,机器学习在图像识别、自动驾驶汽车和围棋等领域取得了前所未有的进步。这些成功在很大程度上是靠监督学习和强化学习来实现的。

这两种方法都要求由人设计训练信号并传递给计算机。在监督学习的情况下,这些是“目标”(例如图像的正确标签); 在强化学习的情况下,它们是成功行为的“奖励”(例如在Atari游戏中获得高分)。因此,机器学习的极限是由人类训练师决定的。

但是学习知识还应该有其他的策略,就像让幼儿学习,不仅有指导(监督学习)和鼓励(强化学习),还应该有自由探索世界(无监督学习)。如果要让AI脱离人类发展成出通用智能,必须要让它掌握无监督学习的技能。

DeepMind今天在官方博客中对无监督学习的原理、近年来取得的成果、发展前景进行了综述。

无监督学习关键的特点是,传递给算法的数据在内部结构中非常丰富,而用于训练的目标和奖励非常稀少。无监督学习算法学到的大部分内容必须包括理解数据本身,而不是将这种理解应用于特定任务。

解码视觉元素

2012年是深度学习的里程碑,AlexNet席卷了ImageNet图像分类竞赛,但是更引人注目的是藏在AlexNet之下的事情。

研究人员在分析AlexNet时发现,它通过为输入构建复杂的内部表示来解释图像,低层次的特征,如纹理和边缘在底层中表示,然后将它们组合在一起形成高级概念,例如更高层次中的轮子和狗。

这与我们的大脑中处理信息的方式非常相似,其中初级感官处理区域中的简单边缘和纹理,然后组装成复杂对象。因此复杂场景的表示可以由“视觉基元”所构建,这种方式与单词构成句子大致相同。

在没有人类明确的指导的情况下,研究人员发现AlexNet的层可以通过基本的“视觉词汇”来解决任务。

迁移学习

AlexNet还可以被迁移到训练之外的视觉任务中,例如识别整个场景而不是单个图像。

人类就非常擅长这种学习方法,我们能迅速调整自己的经验,以适应新的技能和理解收集到的信息。例如,经过专业训练的钢琴家可以相对轻松地掌握弹奏爵士钢琴的方法。

理论上,构成世界正确内部表征的智能体应该能够做同样的事情。

但是AlexNet等分类器所学到的表示仍具有局限性,特别是网络只用单一类别标记图像训练时,那些推断标签时用不上的信息 ,无论它在其他任务中用处多大,都可能被网络所忽略。如果标签总是指向前景,则表示可能无法获取图像的背景。

一种可能的解决方案是提供更全面的训练信号,比如描述图像的详细内容,不单单把图像描述成“狗”,而是“柯基犬在阳光明媚的公园里叼飞盘”。

但是,这些信息很难大规模提供,而且这样做仍然有可能不足以捕获完成任务所需的全部信息。

无监督学习的基本前提是学习丰富、可广泛转移表示的最佳方式,这种方式可以学习关于数据的全部内容。

如果你觉得转移的概念看起来过于抽象,那么请想象一个学习简笔画的孩子。她发现了人体形态的特征。通过增加具体细节,她可以为她的所有同学绘制肖像,加上眼镜、红色T恤的同桌等等。

她发展出这项技能不是为了完成一项特定任务或获得奖励,而是为了反映她描绘周围世界的基本要求。

生成模型和GAN

无监督学习的最简单目标是训练算法生成自己的数据实例,但是模型不应该简单地重现之前训练的数据,否则就是简单的记忆行为。

它必须是建立一个从数据中的基础类模型。不是生成特定的马或彩虹照片,而是生成马和彩虹的图片集;不是来自特定发言者的特定话语,而是说出话语的一般分布。

生成模型的指导原则是,能够构建一个令人信服的数据示例是理解它的最有力证据。正如物理学家理查德·费曼所说:“我不能创造的东西,我就不能了解”(What I cannot create, I do not understand.)。

对于图像来说,迄今为止最成功的生成模型是生成对抗网络(GAN)。它由两个网络组成:一个生成器和一个鉴别器,分别负责伪造图片和识别真假。

生成器产生图像的目的是诱使鉴别者相信它们是真实的,同时,鉴别者会因为发现假图片而获得奖励。

GAN开始生成的图像是杂乱的和随机的,在许多次迭代中被细化,形成更加逼真的图像,甚至无法与真实照片区别开来。最近英伟达的GauGAN还能根据用户草图生成图片。

通过预测创建内容

无监督学习中另一个值得注意的成员是自回归模型,它把数据分成一系列小片段,每个片段依次被预测。这些模型可以通过连续猜测接下来会发生什么来作为输入,并能够再次生成猜测数据。

在语言模型中,每个单词都是从它之前的单词预测出来的。它能够支持在电子邮件和消息应用程序中弹出的文本预测内容。

最近OpenAI公布的GPT-2模型还能能够生成以假乱真的文字段落。

通过控制用于调节输出预测的输入序列,自回归模型也能用于将一个序列转换为另一个序列。例如将文本转换为逼真的手写体、自然的语音,还能将一种语言翻译成另一种语言。

自回归模型以预测特定顺序数据的方式来理解数据。通过预测任何其他数据的任何部分,可以构建更一般的无监督学习算法。

例如从句子中删除一个单词,并试图从剩余的内容中预测它。通过学习进行大量局部预测,系统被迫从整体上理解数据。

生成模型的出现让人们产生了一种担忧,就是它们可能被滥用。虽然通过照片、视频和音频编辑操纵证据历史已久,但生成模型让恶意编辑媒体内容变得更加容易。一个知名的“deepfakes”范例是奥巴马演讲视频片段。

令人鼓舞的是,人们已经做出了面对这些挑战的努力,包括利用统计技术帮助检测伪造内容和验证真实内容、提高公众意识、以及围绕限制生成模型使用范围展开讨论。

生成模型本身也能用在检测伪造内容和异常数据。例如,检测虚假语音或识别支付异常,保护客户免受欺诈。研究人员需要研究生成模型,以便更好地理解它们并降低风险。

实现通用智能

生成模型本身很吸引人,DeepMind的主要兴趣是用它作为通用智能的踏脚石。赋予智能体生成数据的能力是一种赋予其想象力的方式,从而能够规划和推理未来。

DeepMind的研究表明,即使没有明确的生成数据,学习预测环境的不同方面可以丰富智能体的世界模型,从而提高其解决问题的能力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38171

    浏览量

    296892
  • DeepMind
    +关注

    关注

    0

    文章

    131

    浏览量

    12137

原文标题:DeepMind综述无监督学习:通用智能路上的踏脚石,让AI更聪明

文章出处:【微信号:gh_ecbcc3b6eabf,微信公众号:人工智能和机器人研究院】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    趋势: 监督学习普及 当前工业场景中80%的缺陷检测项目面临\"OK样本充足而NG样本稀缺\"的困境,传统监督学习方案难以落地。课程第11系列(
    发表于 12-04 09:28

    游乐场智能断路器设备:游乐场用电聪明安全

    安全事故。所以啊,用电安全,真的不能马虎! 现在,某公司推出了一款专门为游乐场打造的“智能断路器设备”,听起来好像挺高大上,其实说白了,就是给游乐场的“电管家”装上了大脑和眼睛,它变得聪明
    的头像 发表于 10-29 09:59 161次阅读

    AI赋能6G与卫星通信:开启智能天网新时代

    的\"天网\"更加智能、可靠和高效。 AI驱动的网络优化:6G网络\"聪明\"起来 想象一下,当城市中突然出现大型活动,如体育赛事或音乐节,6G网络如何应对激增的用户
    发表于 10-11 16:01

    AI如何家电懂你

    自生成式 AI 爆发以来,多模态 AI智能终端尤其是「具身智能」等领域迅速发展。在智能家电等设备中集成
    的头像 发表于 08-21 16:52 929次阅读

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    的基本理论。了解监督学习监督学习和强化学习的基本原理。例如,在监督学习中,理解如何通过标注数据来训练模型进行分类或回归任务,像通过大量的
    发表于 07-08 17:44

    最新人工智能硬件培训AI基础入门学习课程参考2025版(离线AI语音视觉识别篇)

    视觉开发板开箱即用的离线AI能力,分类列出学习课程知识点和实操参考,希望能够帮助大家快速掌握离线 AI 智能硬件的基础知识与实战技能,同时了解相关A
    发表于 07-04 11:14

    使用MATLAB进行监督学习

    监督学习是一种根据未标注数据进行推断的机器学习方法。监督学习旨在识别数据中隐藏的模式和关系,无需任何
    的头像 发表于 05-16 14:48 1184次阅读
    使用MATLAB进行<b class='flag-5'>无</b><b class='flag-5'>监督学习</b>

    【「零基础开发AI Agent」阅读体验】+ 入门篇学习

    很高兴又有机会学习ai技术,这次试读的是「零基础开发AI Agent」,作者叶涛、管锴、张心雨。 大模型的普及是近三年来的一件大事,万物皆可大模型已成为趋势。作为大模型开发应用中重要组成部分,提示词
    发表于 05-02 09:26

    首创开源架构,天玑AI开发套件端侧AI模型接入得心应手

    、内存带宽占用量大幅度降低50%,端侧AI推理聪明、响应迅速。 天玑AI开发套件2.0还
    发表于 04-13 19:52

    智慧光伏运维管理系统电站聪明省心

           智慧光伏运维管理系统电站聪明省心        光伏电站像一片巨大的太阳能农田,每天默默吸收阳光发电。但要让这片农田高效运转,过去需要大量人力巡查设备、处理故障,既
    的头像 发表于 03-31 15:44 610次阅读
    智慧光伏运维管理系统<b class='flag-5'>让</b>电站<b class='flag-5'>更</b><b class='flag-5'>聪明</b><b class='flag-5'>更</b>省心

    桥PFC变换器综述

    拓扑的发展历程进行了全面综述,并将桥 PFC 变换器拓扑合成方案分为三大类,分别进行了详细介绍。最后,给出了无桥变换器拓扑的发展方向。 关键词:桥 PFC 变换器;双极性增益;Boost 变换器
    发表于 03-13 13:50

    无人机智能巡检系统运维省心

    巡检变得更高效、安全,还能帮企业省下大笔成本。        一、技术简单说:聪明飞行+智能识别        1、会飞的设备:用无人机当眼睛,能飞的远、飞的久,遇到障碍物自动躲
    的头像 发表于 03-05 11:52 801次阅读

    爱立信如何网络运维简单

    在爱立信“可编程网络”这一创新概念里,差异化连接、AI赋能和意图驱动、网络能力开放作为三大基石,各司其职,网络智能、更灵活、开放。本期
    的头像 发表于 03-03 09:27 1w次阅读

    谷歌加速AI部门整合:AI Studio团队并入DeepMind

    近日,谷歌正紧锣密鼓地推进其人工智能(AI)部门的整合工作。据谷歌AI Studio主管Logan Kilpatrick在领英页面上的透露,谷歌已将AI Studio团队整体转移至
    的头像 发表于 01-13 14:40 1149次阅读

    AI变得聪明,他这样训练和改造AI

    积极面,湘江新区融媒体中心联合新区民政和社会保障局(退役军人事务局)特别策划“岗位代言人”栏目,以进一步提升大学生就业认知,探索就业的更多可能。大数据时代,AI如飓
    的头像 发表于 01-09 17:51 1184次阅读
    <b class='flag-5'>让</b><b class='flag-5'>AI</b>变得<b class='flag-5'>更</b><b class='flag-5'>聪明</b>,他这样训练和改造<b class='flag-5'>AI</b>