0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何解决自动驾驶的长期挑战

ml8z_IV_Technol 来源:cc 2019-02-28 14:07 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

经典MIT的Deep Learning for Self-driving Car课程上,邀请到了Waymo首席科学家Drago Anguelov,分享题为“Taming The Long Tail of Autonomous Driving Challenges(驯服自动驾驶的长尾挑战)”,主要是讲在现实世界中的Long Tail现象,各种异常情况该如何收集、融合、发布和测试。

知乎@黄浴总结了此课程的一些新看点:

1. 题目是“长尾”处理;2. 可以处理道路维修场景;3. 可以识别特殊车辆(警车/救护车/消防车);4. 可以预防闯红灯的车辆;5. 可以对马路自行车行为轨迹预测;6. 通过NAS学习模型;7. 不完全依赖机器学习,可以利用专家知识(domain knowledge);8. 不是E2E学习驾驶行为,而是Mid-2-Mid,就是最近的ChauffeurNet;9. 学习的行为预测有自适应性,比如激进的或者温和礼貌的;10. 仿真不能解决所有问题,仿真系统需要更多的agent model,要smart。

下面是智车科技对本次分享的视频解读及PPT:

我毕业于斯坦福大学博士学位,曾研究机器人相关领域。现在Google带领团队研究3D感知,以此来构建一个全新的自动驾驶感知系统。

Waymo这家公司截止上个月已经成立了十周年了(2009年成立)它起源于Google X。

2015年,我们研发的这款自动驾驶汽车进行公路路测试验,这是世界上第一辆成功实现自动驾驶的汽车。在这个案例中,坐在车里的人是个盲人,我们认为这个项目的意义重大。所以我们不仅仅希望这台车只是一个成功的演示案例,我们更加希望能够实现无人驾驶

我将给你们展示一个很酷的视频。你们看,这台汽车真的在自己行驶在公路上。2018年,自动驾驶商业化,这台车学习了很多司机用户的驾驶习惯,使它自身拥有强大的自动驾驶能力。它也成功的在公路上自主行驶(无人驾驶状态)超过10,000,000,000公里。我们的路测实验几乎涵盖了所有的不同城市的驾驶场景,收集了很多驾驶数据。

我想解释一下为什么今天的演讲的题目是“项目的长尾问题”。因为我们在自动驾驶这条路上,我们还有很多问题需要处理和解决,才能使得自动驾驶更加完善。

自动驾驶系统要求有足够的能力,在没有人类司机干预的情况下,安全地处理所有的突发情况。

事实上,突发的异常情况总是发生,而且这些异常情况经常是比较复杂且少见的,而自动驾驶就是要安全的解决这些突发的复杂且少见的情况。这就是我所说的“长尾巴情况”,它不同于在常见的场景中的自动驾驶,而这种复杂且少见的驾驶场景在自动驾驶领域确实非常重要。

我们来看这场景,画面中骑自行车的人带着一块“停止”的标志牌。但是我们并不知道他会停在哪里,什么时候停下。

我们再来看这个场景,有东西掉在路上了,周围的建筑也是一个问题。

现实中存在很多不同的场景和不同的问题,像这个视频中,我们的车辆听到了其他车辆的鸣笛声音,那么如何处理这个鸣笛的声音,这些都需要很好的(安全的)解决掉。

那么我们是如何解决这些问题的呢?

首先是,感知。我们利用传感器感知周围环境,并在屏幕上显示(可以显示周围的建筑、环境等等),以此重新构建一个地图。

感知的复杂性包括,在路上,有很多不同的物体,他们有不同的形状、颜色、状态。比如,有不同样式的信号灯,路上有动物和行人,行人还会穿着不同颜色的衣服,有不同的姿势状态。为了清晰的观察到这些,我们装置了很多传感器,来解决这个问题。

感知的复杂性还包括,很多不同的环境。比如,一天当中不同的时间段(白天/黑夜),不同的季节,不同的天气下雨或者下雪。这些都需要识别。

感知的复杂性还包括,不同的场景配置,或者叫物体之间的关系识别。不同的搭配就有不同的物体之间的关系,比如图片中,一个人拿着一块巨大的板子,第二幅图中,玻璃中有反光现象,第三幅图中人骑着马等等不同的场景和关系。

这种映射功能是一个非常复杂的功能,这是由物体、环境、场景配置共同决定的。

所以这需要我们在观察周围环境的基础上做出预判,对周边人和物体的下一个动作做出预判,即我们要对短时间内发生的事情做出一个预测。

那我们如何来预判呢?

预测的影响因素有过去的动作、高度的场景语义、物体属性和出现提示。我们考虑周围的任何事物,比如有一个自行车想要通过,那么我们需要停下或者放慢速度让它通过,这就需要提前计划设计,做出安全的解决方案。同时,我们也要向周围的人和物发出信号。

学校周围的场景,这是一个非常复杂的问题。机器学习是一个非常好的工具用以应对复杂的情况。所以我们要学习出一个系统,以此优化现实存在的各种场景问题。

传统的学习模式:用工具构建,改造和进化难以实现。

机器学习:更像是一个工厂,我们仅仅需要把数据输入进去,就能得到正确的模型。

关于如何创建更智能的机器学习模型的周期如图中所示。

因为Waymo隶属于Google,有用强大的数据中心,所以他们用TensorFlow和TPU,做出准确的标注,而且分布均匀。

数据收集:这是一个非常重要的环节,这是解决“长尾巴情况”的重要因素。数据收集是激发主动学习的重要环节,也是是机器学习周期运行良好的重要基础。

Google AI和DeepMind都在关注自动驾驶。机器学习自动化已经部署好,几乎所有的事情都接近自动化。

NAS cell是一种小网络,反复用作构建神经网络体系结构的高级构件。

首先是用NAS cell进行激光雷达分割。在这一过程中,延迟也很重要。

稳定平衡的体系结构本身也可以自动化,这是很灵捷并且很强大的。

这条蓝色的线,延迟最小且分割情况最好。

解决机器学习限制问题。但是在某些情况下还是存在限制,需要我们增强鲁棒性。

这幅图片描述的问题是存在冗余和互补的传感器和传统的逻辑。

混合系统:这是将传统AI和机器学习相结合的系统,这样可以保证系统鲁棒性,保证自动驾驶安全性。

随着时间的推移,如上图机器学习的范围可能会扩大,甚至完全掌控。

那么我们如何进行大规模的路测呢?

因为特殊罕见的异常情况很少发生,如果使用真实情况进行路测,我们需要等待很长时间,为了解决这个问题,我们自己构建条道路。

因为我们有Google的数据支持所以这个想法是可行的,所以我们按照如下图数据做出仿真模型。仿真出足够多的场景供以测试。而我们为什么要做出如此多的仿真模型呢?因为有时会得出截然相反的结果,所以我们要加强系统的鲁棒性,这就要求我们做出足够多的仿真模型,确保系统的准确性。

这是一种抽样方法。

上图正在模拟真实世界可能会发生的事情。如果想要得到准确的数据,我们需要模仿真实的人类在不同的情形下做出的真实举动。

如何评价这个简单的模型呢?

正面:容易调整关键参数,如反应时间,制动轮廓,横向加速。有效再现避碰场景中的基本人类行为;反面:无法处理更复杂的交互行为。

但是定义它本身是一个复杂的问题,所以我们能做什么呢?那就是从实际演示中学习代理模型。

机器学习仿真的解决办法就是构建另一个机器学习模型。

添加排列可能会出现问题,这是一个众所周知的问题。

我们使用了非常不同的体系结构去避免碰撞,例如RNN模型。

在一条陌生的路上开着车,需要看到更多的范围和预判更多的特殊情况,如掉头需要处理好。

上图是人类行为分布,可以看到这是个正态分布,所以这就是导致了“长尾巴情况”的根本原因。即使图像两端的情况很少发生,我们的测试也要涵盖进去所有的人类行为情况。

需要我们拓宽这个分布,或者仿真出更多的例子。

行为轨迹优化模型:反RL用于找到创建所需轨迹的变量。

许多不同的方法来克服“长尾”问题。

“智能”模型对于自动化是至关重要的。通过模拟更真实人类行为是非常重要的。

因为还存在很多不同的场景,每天都上演着不同的事情,所以“长尾巴情况”还将会在不同的城市,不同的环境中持续下去的。

在一些好的训练步骤如下:对收集的数据进行培训;能够在不确定或不正确的情况下进行量化;能够采取措施,比如向评分者提问;更好的是,通过因果分析直接自我更新。

总结:Waymo 专家举出的有人带着停车标志是一个有趣例子,而且对机器学习的一个非常基本的介绍,其中提到了AutoML模型,可以测试多达10K的不同架构。然后采用前100个架构,在更大的模型上进行测试。Waymo是一个混合系统,使用ML和混合ML(传统的ML编程)。随着ML能力的增长,传统场景越来越少。视频中也提到了waymo如何测试,结构化测试,是否有封闭的测试环境。在模拟器方面,他们认为代理能够模拟现实世界中发生的事情。不断扩大复杂模型,来处理长尾问题。或者利用专家领域知识,换句话说混合模型或传统编程。以及逆强化学习,值得深入研究。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 自动驾驶
    +关注

    关注

    791

    文章

    14669

    浏览量

    176512
  • waymo
    +关注

    关注

    2

    文章

    315

    浏览量

    25470

原文标题:Waymo 首席科学家在MIT自动驾驶课上开讲:如何解决自动驾驶的长期挑战

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    不同等级的自动驾驶技术要求上有何不同?

    谈到自动驾驶,不可避免地会涉及到自动驾驶分级,美国汽车工程师学会(SAE)根据自动驾驶系统与人类驾驶员参与驾驶行为程度的不同,将
    的头像 发表于 10-18 10:17 2410次阅读

    塑造自动驾驶汽车格局的核心技术

    自动驾驶汽车长期以来一直是科幻小说中的情节,但在如今的2025年,它似乎已经离我们越来越近,智能辅助驾驶已经出现在越来越多的新能源汽车中。但距离完全的自动驾驶仍有需要克服的工程
    的头像 发表于 08-21 16:03 705次阅读

    卡车、矿车的自动驾驶和乘用车的自动驾驶在技术要求上有何不同?

    [首发于智驾最前沿微信公众号]自动驾驶技术的发展,让组合辅助驾驶得到大量应用,但现在对于自动驾驶技术的宣传,普遍是在乘用车领域,而对于卡车、矿车的自动驾驶发展,却鲜有提及。其实在卡车、
    的头像 发表于 06-28 11:38 718次阅读
    卡车、矿车的<b class='flag-5'>自动驾驶</b>和乘用车的<b class='flag-5'>自动驾驶</b>在技术要求上有何不同?

    自动驾驶是为了“增强人”,还是为了“替代人”?

    ?在这场看似简单的“增强人”与“替代人”之争中,其实折射出自动驾驶不同发展阶段的技术演进、市场需求与社会伦理等。要深入理解这一话题,我们需要从自动驾驶的技术路径谈起,逐步剖析它在不同阶段的目标与挑战,再回到“增
    的头像 发表于 06-25 11:07 494次阅读

    自动驾驶安全基石:ODD

    电子发烧友网综合报道 自动驾驶ODD(Operational Design Domain)即设计运行域,是指自动驾驶系统被设计为安全、有效运行的具体条件范围。它定义了自动驾驶汽车在哪些环境、场景
    的头像 发表于 05-19 03:52 5798次阅读

    AI将如何改变自动驾驶

    [首发于智驾最前沿微信公众号]五一假期继续闲聊一下,还欢迎大家随意留言,随着人工智能(AI)的发展,很多车企及自动驾驶供应商正尝试将AI融入自动驾驶系统,为何大家都在积极推动这一技术?AI会给
    的头像 发表于 05-04 09:58 632次阅读

    自动驾驶“电车难题”如何解

    近年来,自动驾驶技术正以前所未有的速度发展,并逐渐服务于大众出行。自动驾驶在带来便捷和安全的同时,也引发了一系列伦理、法律和社会问题的探讨,其中一个便是自动驾驶中“电车难题”的应对方案。传统的电车
    的头像 发表于 02-25 08:54 1496次阅读

    为什么聊自动驾驶的越来越多,聊无人驾驶的越来越少?

    “无人驾驶”与“自动驾驶”,傻傻分不清楚?就在之前的一篇文章中,引用了王传福的一句话,其说的是无人驾驶是“扯淡”( 相关阅读: 无人驾驶是“扯淡”?是皇帝的新装?),随后也有小伙伴问,
    的头像 发表于 02-23 10:52 1007次阅读
    为什么聊<b class='flag-5'>自动驾驶</b>的越来越多,聊无人<b class='flag-5'>驾驶</b>的越来越少?

    沃尔沃与Waabi携手开发自动驾驶卡车

    沃尔沃自动驾驶解决方案公司(V.A.S.)近日宣布与加拿大自动驾驶卡车技术公司Waabi建立合作伙伴关系,共同致力于自动驾驶卡车解决方案的研发。
    的头像 发表于 02-10 17:33 848次阅读

    自动驾驶的未来 - 了解如何无缝、可靠地完成驾驶

    作者:Don Horne 投稿人:DigiKey 北美编辑 自动驾驶组件的最新进展使许多驾驶员的“无需干预”成为现实。然而,许多驾驶员对真正自动驾驶汽车的安全性和可靠性仍然存在不情愿和
    的头像 发表于 01-26 21:52 904次阅读
    <b class='flag-5'>自动驾驶</b>的未来 - 了解如何无缝、可靠地完成<b class='flag-5'>驾驶</b>

    L3自动驾驶法规同步登陆北京、武汉 #自动驾驶 #智能驾驶 #交通法规

    自动驾驶
    jf_15747056
    发布于 :2025年01月07日 17:55:43

    从《自动驾驶地图数据规范》聊高精地图在自动驾驶中的重要性

    自动驾驶地图作为L3级及以上自动驾驶技术的核心基础设施,其重要性随着智能驾驶技术的发展愈发显著。《自动驾驶地图数据规范》(DB11/T 2041-2022)由北京市规划和自然资源委员会
    的头像 发表于 01-05 19:24 2868次阅读
    从《<b class='flag-5'>自动驾驶</b>地图数据规范》聊高精地图在<b class='flag-5'>自动驾驶</b>中的重要性

    自动驾驶中常提的鲁棒性是个啥?

    持稳定的运行能力,这是自动驾驶实现从技术验证到实际落地的关键要求。然而,鲁棒性这一概念对大多数人来说可能较为抽象,其在自动驾驶中的具体表现、技术实现与挑战却充满了值得探讨的内容。 什么是鲁棒性? 鲁棒性(Robustness)一
    的头像 发表于 01-02 16:32 8343次阅读
    <b class='flag-5'>自动驾驶</b>中常提的鲁棒性是个啥?