0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶基础之传感器融合

ml8z_IV_Technol 来源:cg 2018-12-25 09:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着传感器技术、成像技术、雷达、LiDAR、电子设备和人工智能技术的进步,数十种先进驾驶辅助系统(ADAS)功能已得以实现,包括防撞、盲点监测、车道偏离报警和停车辅助。通过传感器融合同步此类系统的运行,以允许全自动驾驶车辆或无人驾驶车辆对周围环境检测,并警告驾驶员潜在的道路危险,甚至可以采取独立于驾驶员的规避动作来避免碰撞。

自动驾驶汽车还必须能在高速情况下区分并识别前方物体。使用距离判断技术,这些自动驾驶汽车必须快速构建出约100米远道路的3D地图,并能在250米远的距离上创建出高角分辨率的图像。如果驾驶员不在场或者不掌握驾驶,汽车人工智能必须做出最优决策。

此任务的几种基本方法之一是,测量能量脉冲从自动驾驶汽车发出到目标再返回车辆的往返飞行时间(ToF)。当知道脉冲通过空气的速度时,就可以计算出反射点的距离。这个脉冲可以是超声波(声纳),也可以是无线电波(雷达)或激光(LiDAR)。

这三种ToF技术,想拥有更高的角分辨率图像,LiDAR是最好的选择,这是因为LiDAR图像的衍射(光束散度)更小,对邻近物体识别能力比雷达更优秀(见下图)。对于高速情况下需要足够时间来应对如迎头相撞等潜在危险,更高的角分辨率尤为重要。

下图是无人驾驶的偏算法层的系统框架。从左边看,这是一个传感器的输入,如激光雷达、摄像头、毫米波、GPS、编码器和 IMU。这些传感器的数据输入到系统的感知算法里,通过这个感知算法,处理器会将这些数据进行处理分析,如何将静态的物体分离出来,并如何识别、分类与跟踪动态物体。

高精度地图的获取很大程度依赖激光雷达以及摄像头。我们获取高精度地图后,结合 GPS 和 IMU、编码器、实时感知环境的特征,进行地图匹配以及进行定位。对于路径规划和运动控制,最终是结合车辆的CAN 总线,对车进行控制。

Google 的自动驾驶汽车 Google Car就是综合使用了上述传感设备采集感知环境信息进行处理,并对车辆做出控制。

Google Car上最重要也是最贵的器件就是头顶的这台Velodyne Lidar公司生产的HDL-64E64线激光发射器了。它可以一边旋转一边不间断的发射64束最远射程可达120米的激光束,并接收反射回来的光束,依据返回时间的差别计算出物体与汽车之 间的距离。从而绘制出汽车周围实时的3D地形图。并且因为光束非常密集并且刷新频率非常快,综合探测数据后还可以判断出物体的形状、大小和大致的运动轨 迹,以此作为接下来行动的判断依据之一。HDL-64E的性能非常强大。每秒可以给Google Car的处理器提供130万组数据,这可以保证提供给Google Car处理器的信息几乎是实时的。当然这也对处理器提出了更高的要求。下图就是在HDL-64E的运作下Google Car看到的世界。这个Google Car眼中的世界,也是未经处理器处理过的原始数据样貌。

Google Car会将收集到的数据与车体内置的谷歌地图已有的信息进行整合,从而判断出相当精确的四周的状况,为做出反应打下良好基础。

理论上HDL-64E已经足以确定汽车的位置了。但在环境复杂的道路上,驾驶者和行人的安全都需要多重保障。因此谷歌给Google Car配了更直观的眼睛:摄像头。Google Car有一对向前的摄像头,其之间有着一定的距离。从两个摄像头传回的画面的视差就像人的两只眼睛一样,可以帮助车辆判断自己的位置、行进的速度等信息。Google Car的车胎轮毂上同样带有位置传感器,用于探测车轮转动,也能帮助车辆进行定位。再同GPS得出的数据进行整合。数组数据共同保证车辆定位的准确性。

另外,摄像头还可以辨识出路上出现的交通标志和信号灯等物体,以保证自身的运行会严格遵守交通规则。这点是激光发射器很难办到的。信号灯、斑马线、行车线、限速标识……交通标示无处不在,它们是道路安全的保证。

HDL-64E是有一定判断物体运动轨迹和速度的能力的。但其获得的数据毕竟不实时,并且要将其与车辆自身的速度结合,计算出两者的相对运行速度,还需要许多额外的计算量。因此谷歌为车辆前后都配备了车载雷达,它们可以很精确的测出前后车辆与GoogleCar的相对速度,以此判断接下来的车速该如何变化。

以上所有传感器的数据都会汇集起来并传输给位于汽车右后方的主处理器(AI处理器)进行处理,由于所有数据都是实时的,因此流量异常庞大(可达到1GB每 秒)。因此Google Car的车在计算机的性能也是非常强的。处理器会参照各传感器提供过来的数据,并绘制出一份最终的周边环境地形图。

它会将所有对其意义不同的物体用不同的颜色标示出来。如粉色代表暂时不会与行进路线相交的物体,绿色代表已经阻挡在行进路线上的物体等。然后车内的程序,或者说AI就会对路况作出判断,随时根据道路情况决定汽车下一步的行动。下图就是经过车载处理器处理后的世界的样子了。

Google Car的AI已经具有相当程度的道路智能,规划目的地路线这样的小事早已不值一提,在遇到一些临时或者突发的事件的时候GoogleCar也能及时作出合适的反应:比如在交通灯变绿色的时候,汽车开始拐弯,但这时有路人从前面走过,这时GoogleCar将会让路。另一个例子是,在通过没有红绿灯的十字路口的时候,它会根据大家通用的守则让其它车先过,如果其它车辆没有反应,它在通过路口之前将先往前行进一点,以表明自己的意图。

了解了谷歌为保护道路安全设置的诸多保险措施、完善的检测和判断机制,再结合Google Car的表现,我们很有理由相信无人驾驶汽车在不远的将来就将大面积替代有人驾驶的车辆。事实上,早在2012年,美国内华达州机动车辆管理局就已经为 Google Car颁发了美国首个“自动驾驶”汽车的车牌。使得GoogleCar可以合法上路,尽管该法规同时规定该车上路时车上必须至少有2人在监视车辆的运行状况。但这更多只是因为技术暂时的不成熟而做出的一个临时的限制条款。我们有理由相信,不会分神、疲劳、能随时兼顾周围所有状况的车载AI的驾驶能力终有一天会超过人类驾驶员。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54368

    浏览量

    786009
  • 自动驾驶
    +关注

    关注

    791

    文章

    14669

    浏览量

    176492

原文标题:自动驾驶基础之——传感器融合

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    L4级自动驾驶数据采集系统首选

    级数据记录设备 ,为自动驾驶研发提供端到端的解决方案,助力企业突破数据采集瓶颈。 一、自动驾驶数据采集的三大核心需求 多模态传感器融合 需同时兼容摄像头(8K@60fps)、激光雷达(
    的头像 发表于 11-26 09:31 237次阅读

    超声波传感器线圈:自动驾驶实现精确实时近距离感知的关键

    超声波传感器线圈是自动驾驶系统中不可或缺的组成部分。随着自动驾驶技术的快速发展,各类传感器成为智能汽车感知环境的关键,不仅保障行车安全,也提升了驾驶
    的头像 发表于 11-12 16:03 148次阅读

    如何处理自动驾驶感知传感器脏污问题?

    [首发于智驾最前沿微信公众号]自动驾驶系统依赖多种传感器来感知外界环境,摄像头负责将光学图像转换为图像数据供算法解析,激光雷达生成描述物体三维形状的点云数据,毫米波雷达探测目标的距离与速度,超声波
    的头像 发表于 10-21 13:50 226次阅读
    如何处理<b class='flag-5'>自动驾驶</b>感知<b class='flag-5'>传感器</b>脏污问题?

    激光雷达传感器自动驾驶中的作用

    2024 年至 2030 年间,高度自动化汽车每年的出货量将以 41% 的复合年增长率增长。这种快速增长导致汽车品牌对精确可靠传感器技术的需求空前高涨,因为他们希望提供精准、可靠且最终完全自动驾驶的汽车。
    的头像 发表于 10-17 10:06 3434次阅读

    端到端自动驾驶相较传统自动驾驶到底有何提升?

    各自专业模块独立承担,再通过预定的接口协议将信息有序传递。与相对照,“端到端”(end-to-end)自动驾驶以统一的大规模神经网络为核心,将从摄像头、雷达、激光雷达等传感器采集到的原始数据直接映射为
    的头像 发表于 09-02 09:09 504次阅读
    端到端<b class='flag-5'>自动驾驶</b>相较传统<b class='flag-5'>自动驾驶</b>到底有何提升?

    太阳光模拟 | 在汽车自动驾驶开发中的应用

    在汽车产业向电动化、智能化转型的浪潮中,自动驾驶技术的研发面临着复杂环境感知的挑战。光照条件作为影响传感器性能的关键因素,直接关系到自动驾驶系统的安全性和可靠性。紫创测控Luminbox太阳光模拟
    的头像 发表于 07-24 11:26 427次阅读
    太阳光模拟<b class='flag-5'>器</b> | 在汽车<b class='flag-5'>自动驾驶</b>开发中的应用

    康谋分享 | 基于多传感器数据的自动驾驶仿真确定性验证

    自动驾驶仿真测试中,游戏引擎的底层架构可能会带来非确定性的问题,侵蚀测试可信度。如何通过专业仿真平台,在多传感器配置与极端天气场景中实现测试数据零差异?确定性验证方案已成为自动驾驶研发的关键突破口!
    的头像 发表于 07-02 13:17 3984次阅读
    康谋分享 | 基于多<b class='flag-5'>传感器</b>数据的<b class='flag-5'>自动驾驶</b>仿真确定性验证

    自动驾驶汽车如何正确进行道路识别?

    识别不仅仅是简单地判断车辆是否在车道中心行驶,更涉及到对车道线、交通标志、道路边缘以及其他道路要素的综合感知与理解。 传感器硬件 传感器硬件是自动驾驶道路识别的基础,当前主流的传感器
    的头像 发表于 06-29 09:40 1327次阅读
    <b class='flag-5'>自动驾驶</b>汽车如何正确进行道路识别?

    自动驾驶汽车是如何准确定位的?

    厘米级的定位精度,并能够实时响应环境变化。为此,自动驾驶系统通常采用多传感器融合的方式,将全球导航卫星系统(GNSS)、惯性测量单元(IMU)、激光雷达(LiDAR)、摄像头、超宽带(UWB)等多种
    的头像 发表于 06-28 11:42 869次阅读
    <b class='flag-5'>自动驾驶</b>汽车是如何准确定位的?

    新能源车软件单元测试深度解析:自动驾驶系统视角

    、道路塌陷)的测试用例库,通过虚拟仿真和真实路测数据回灌验证算法的鲁棒性。 ‌第二部分:自动驾驶软件单元测试技术体系****‌ ‌测试对象分类与测试策略‌ ‌ 数据驱动型模块(如传感器融合
    发表于 05-12 15:59

    AI将如何改变自动驾驶

    自动驾驶带来哪些变化?其实AI可以改变自动驾驶技术的各个环节,从感知能力的提升到决策框架的优化,从安全性能的增强到测试验证的加速,AI可以让自动驾驶从实验室走向大规模商业化。 对于感知系统来说,AI通过多模态
    的头像 发表于 05-04 09:58 631次阅读

    自动驾驶大模型中常提的Token是个啥?对自动驾驶有何影响?

    、多模态传感器数据的实时处理与决策。在这一过程中,大模型以其强大的特征提取、信息融合和预测能力为自动驾驶系统提供了有力支持。而在大模型的中,有一个“Token”的概念,有些人看到后或许会问: Token是个啥?对
    的头像 发表于 03-28 09:16 972次阅读

    激光雷达技术:自动驾驶的应用与发展趋势

    随着近些年科技不断地创新,自动驾驶技术正逐渐从概念走向现实,成为汽车行业的重要发展方向。在众多传感器技术中,激光雷达(LiDAR)因其独特的优势,被认为是实现高级自动驾驶功能的关键。激光雷达技术
    的头像 发表于 03-10 10:16 1421次阅读
    激光雷达技术:<b class='flag-5'>自动驾驶</b>的应用与发展趋势

    BEVFusion —面向自动驾驶的多任务多传感器高效融合框架技术详解

    BEVFusion 技术详解总结——面向自动驾驶的多任务多传感器高效融合框架原始论文:*附件:bevfusion.pdf介绍(Introduction)背景:自动驾驶系统配备了多种
    的头像 发表于 02-26 20:33 5968次阅读
    BEVFusion —面向<b class='flag-5'>自动驾驶</b>的多任务多<b class='flag-5'>传感器</b>高效<b class='flag-5'>融合</b>框架技术详解

    智能驾驶传感器发展现状及发展趋势

    随着人工智能和自动驾驶技术的飞速发展,智能驾驶传感器作为自动驾驶系统的核心硬件,正经历着前所未有的变革与创新。这些传感器如同
    的头像 发表于 01-16 17:02 1516次阅读