0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用tensorflow快速搭建起一个深度学习项目

lviY_AI_shequ 来源:未知 作者:李倩 2018-10-25 08:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在上一讲中,我们学习了如何利用numpy手动搭建卷积神经网络。但在实际的图像识别中,使用numpy去手写 CNN 未免有些吃力不讨好。在 DNN 的学习中,我们也是在手动搭建之后利用Tensorflow去重新实现一遍,一来为了能够对神经网络的传播机制能够理解更加透彻,二来也是为了更加高效使用开源框架快速搭建起深度学习项目。本节就继续和大家一起学习如何利用Tensorflow搭建一个卷积神经网络。

我们继续以 NG 课题组提供的 sign 手势数据集为例,学习如何通过Tensorflow快速搭建起一个深度学习项目。数据集标签共有零到五总共 6 类标签,示例如下:

先对数据进行简单的预处理并查看训练集和测试集维度:

X_train = X_train_orig/255.X_test = X_test_orig/255.Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).Tprint ("number of training examples = " + str(X_train.shape[0]))print ("number of test examples = " + str(X_test.shape[0]))print ("X_train shape: " + str(X_train.shape))print ("Y_train shape: " + str(Y_train.shape))print ("X_test shape: " + str(X_test.shape))print ("Y_test shape: " + str(Y_test.shape))

可见我们总共有 1080 张 64643 训练集图像,120 张 64643 的测试集图像,共有 6 类标签。下面我们开始搭建过程。

创建placeholder

首先需要为训练集预测变量和目标变量创建占位符变量placeholder,定义创建占位符变量函数:

def create_placeholders(n_H0, n_W0, n_C0, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X') Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y') return X, Y

参数初始化

然后需要对滤波器权值参数进行初始化:

def initialize_parameters(): """ Initializes weight parameters to build a neural network with tensorflow. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) parameters = {"W1": W1, "W2": W2} return parameters

执行卷积网络的前向传播过程

前向传播过程如下所示:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

可见我们要搭建的是一个典型的 CNN 过程,经过两次的卷积-relu激活-最大池化,然后展开接上一个全连接层。利用Tensorflow搭建上述传播过程如下:

def forward_propagation(X, parameters): """ Implements the forward propagation for the model Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2'] # CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME') # RELU A1 = tf.nn.relu(Z1) # MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME') # CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME') # RELU A2 = tf.nn.relu(Z2) # MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME') # FLATTEN P2 = tf.contrib.layers.flatten(P2) Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None) return Z3

计算当前损失

在Tensorflow中计算损失函数非常简单,一行代码即可:

def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y)) return cost

定义好上述过程之后,就可以封装整体的训练过程模型。可能你会问为什么没有反向传播,这里需要注意的是Tensorflow帮助我们自动封装好了反向传播过程,无需我们再次定义,在实际搭建过程中我们只需将前向传播的网络结构定义清楚即可。

封装模型

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009, num_epochs = 100, minibatch_size = 64, print_cost = True): """ Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() tf.set_random_seed(1) seed = 3 (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # Create Placeholders of the correct shape X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y) # Initialize parameters parameters = initialize_parameters() # Forward propagation Z3 = forward_propagation(X, parameters) # Cost function cost = compute_cost(Z3, Y) # Backpropagation optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables globally init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 5 == 0: print ("Cost after epoch %i: %f" % (epoch, minibatch_cost)) if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

对训练集执行模型训练:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

训练迭代过程如下:

我们在训练集上取得了 0.67 的准确率,在测试集上的预测准确率为 0.58 ,虽然效果并不显著,模型也有待深度调优,但我们已经学会了如何用Tensorflow快速搭建起一个深度学习系统了。

注:本深度学习笔记系作者学习 Andrew NG 的 deeplearningai 五门课程所记笔记,其中代码为每门课的课后assignments作业整理而成。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106797
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123905
  • tensorflow
    +关注

    关注

    13

    文章

    331

    浏览量

    61854

原文标题:深度学习笔记12:卷积神经网络的Tensorflow实现

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    分享嵌入式开发学习路线

    拓展期(3-4月) 学习嵌入式操作系统(RTOS)和物联网通信技术,能开发“多任务、联网”的复杂项目,理解企业级嵌入式开发的“架构思维”。这阶段的
    发表于 12-04 11:01

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    的亮点及优势? 、课程亮点 工业级案例:包含双CCD光学分选转盘、机械手手眼协调等12完整项目 源码交付:所有案例提供LabVIEW源代码,包含深度
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    质降本增效\"的核心需求。 团购课程的亮点及优势? 、课程亮点 工业级案例:包含双CCD光学分选转盘、机械手手眼协调等12完整项目 源码交付:所有案例提供LabVIEW源代码,包含深度
    发表于 12-03 13:50

    人工智能AI必备的5款开源软件推荐!

    开发领域里几乎“人手必备”的软件——它们不仅让学习更轻松,也让产品更快落地。 TensorFlow深度学习界的“老将” 提起智能算法的
    的头像 发表于 11-19 15:35 144次阅读
    人工智能AI必备的5款开源软件推荐!

    分享嵌入式学习阶段规划

    给大家分享嵌入式学习阶段规划: ()基础筑牢阶段(约 23 天) 核心目标:打牢 C 语言、数据结构、电路基础C 语言开发:学变量 / 指针 / 结构体等核心语法,用 Dev-
    发表于 09-12 15:11

    深度学习对工业物联网有哪些帮助

    、实施路径三维度展开分析: 深度学习如何突破工业物联网的技术瓶颈? 1. 非结构化数据处理:解锁“沉睡数据”价值 传统困境 :工业物联网中70%以上的数据为非结构化数据(如设备振
    的头像 发表于 08-20 14:56 758次阅读

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    GitHub等平台上寻找感兴趣的AI开源项目。例如,可以参与些小型的深度学习框架改进项目,或者数据标注工具的开发
    发表于 07-08 17:44

    恒讯科技分析:云储存服务器搭建教程

    搭建云存储服务器是相对复杂但极具实用性的项目,以下是简化的
    的头像 发表于 07-07 11:07 1064次阅读

    HarmonyOS实战:组件化项目搭建

    ?本文将详细讲解HarmonyOs组件化项目搭建的全过程,带领大家实现组件化项目项目创建
    的头像 发表于 06-09 14:58 516次阅读
    HarmonyOS实战:组件化<b class='flag-5'>项目</b><b class='flag-5'>搭建</b>

    SOLIDWORKS 2025教育版:紧密的产学研合作,搭建理论与实践的桥梁

    在工程技术教育领域,理论与实践的结合直是培养高素质人才的关键。SOLIDWORKS 2025教育版作为款CAD软件,通过紧密的产学研合作,成功搭建起了理论与实践之间的桥梁,为学生、教师和行业专家提供了
    的头像 发表于 03-26 17:21 593次阅读
    SOLIDWORKS 2025教育版:紧密的产学研合作,<b class='flag-5'>搭建</b>理论与实践的桥梁

    用树莓派搞深度学习TensorFlow启动!

    介绍本页面将指导您在搭载64位Bullseye操作系统的RaspberryPi4上安装TensorFlowTensorFlow专为深度
    的头像 发表于 03-25 09:33 963次阅读
    用树莓派搞<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?<b class='flag-5'>TensorFlow</b>启动!

    军事应用中深度学习的挑战与机遇

    ,并广泛介绍了深度学习在两主要军事应用领域的应用:情报行动和自主平台。最后,讨论了相关的威胁、机遇、技术和实际困难。主要发现是,人工智能技术并非无所不能,需要谨慎应用,同时考虑到其局限性、网络安全威胁以及
    的头像 发表于 02-14 11:15 818次阅读

    BP神经网络与深度学习的关系

    ),是种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度
    的头像 发表于 02-12 15:15 1340次阅读

    【ELF 2学习板试用】ELF2开发板(飞凌嵌入式)搭建深度学习环境部署(RKNN环境部署)

    用户部署使用 RKNN Toolkit2导出的 RKNN 模型,从而加速 AI 应用的落地。 RKNPU2 的架构设计目标是优化深度学习模型的执行效率,其核心是专门为机器
    发表于 02-04 14:15

    基于华为云 Flexus 云服务器 X 实例搭建 Linux 学习环境

    不仅提供了强大的计算资源,还拥有灵活的扩展能力和稳定的运行表现,为用户提供了可靠的技术支撑。特别是对于那些希望快速搭建 Linux 学习环境的用户来说,华为云 Flexus 云服务器 X 实例是
    的头像 发表于 12-25 17:10 903次阅读
    基于华为云 Flexus 云服务器 X 实例<b class='flag-5'>搭建</b> Linux <b class='flag-5'>学习</b>环境