0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Arm如何应对不同AI需求层次与发展路径?

pmkA_arm_china 来源:未知 作者:胡薇 2018-07-17 16:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近年来,随着越来越多的人工智能AI)与机器学习(ML)成功案例出现,它们已经从一个相对模糊的计算机科学概念迅速发展成为实现智能化的必备技术。国际权威基金评级机构Morningstar预测,2021年全球AI芯片市场规模有可能超过200亿美元。2017年5月Grand View Research 的最新报告称,全球深度学习市场规模预计在2025年达到102亿美元。

机器学习算法和深度学习芯片组在取得不断突破的同时,AI也持续向不同垂直行业领域、边缘终端纵横渗透,从软/硬两方面实现降本增效及体验升级,而整个AI产业生态正在构建,新的秩序正在形成,市场玩家已远不止IT巨头与“独角兽们”,包括Arm在内的IP设计公司、通用或专用芯片公司、传统电子、通信巨头也纷纷开展自己的AI生态布局。

近日在Arm Tech Day上,Arm多部门的技术专家首次联手为业界阐述了Arm AI/ML发展观和最新战略布局。针对不同AI需求层次、发展路径、市场空白,Arm又会如何应对呢?

Arm机器学习事业部技术总监Ian Bratt在Arm Tech Day上发表演讲

“慢工出细活”,Arm稳步推进AI平台搭建

在智能化的行业大背景下,机器学习可以被应用于公司中每个岗位,并可能影响到各行各业各家公司,众多玩家纷纷涌入该领域。不过随着高速5G网络时代的到来,Arm机器学习事业部技术总监Ian Bratt认为, AI应用场景所要求的低时延与快速响应、将实时数据传输至云端的成本与出于对数据安全性的保护,机器学习正在由数据中心走向边缘设备,而在边缘端部署机器学习的关键并不在于某一款处理器,围绕的其实是更为宏观的生态系统。

Arm一直在扎实而积极地布局AI/ML领域,通过不断推出创新架构与高性能IP加强AI/ML的计算力。“2017年3月,Arm推出全新DynamIQ技术,代表了多核处理设计行业的转折点,其灵活多样性将重新定义更多类别设备的多核体验,覆盖从端到云的安全、通用平台,利用针对AI/ML的全新处理器指令集以实现更先进的人工智能;

2018年2月, Arm为了实现在边缘的AI/ML工作负载推出了Project Trillium项目,这是一套包括Arm ML处理器与OD(Object Detection)处理器在内的高度可扩展处理器的IP组合,能够在大量提升计算需求的同时,也保持出色的能效表现。后文要提到的ML处理器则是专门针对机器学习而重新设计的,它基于高度可扩展的Arm机器学习架构,并达到了机器学习应用场景要求的最高性能和效率;

2018年6月,Arm发布全新计算和多媒体IP套件,包括基于DynamIQ技术的Cortex-A76 CPU,Mali-G76 GPU与Mali-V76 VPU,对Arm Project Trillium项目完美补充,也将高性能计算力由移动端覆盖到笔记本端。”Arm市场营销资深总监Ian Smythe介绍了Arm针对不用层次、环节AI/ML需求的扎实创新节奏。

Arm全新计算和多媒体IP套件优化了AI/ML在设备端的使用

此外,有研究分析显示:目前中国AI开发者正在接受从封闭的单机系统转向快捷灵活的开源框架的新一代AI技术演进。而据悉,Arm Project Trillium绝不是要与现有的成熟神经网络开源框架(如Caffe、TensorFlow等)竞争。实质上,它依靠类似于Arm NN等神经网络机器学习软件桥接了现有神经网络框架与在嵌入式 Linux 平台上运行的底层处理硬件(例如 CPU、GPU 、Arm 机器学习处理器或合作伙伴IP),让开发人员继续使用他们首选的框架和工具,无缝转换结果后可在底层平台上运行,真正达到无处不在的机器学习应用。

Arm Project Trillium平台架构

“从0开始”设计ML处理器架构,Arm补全AI市场空白

虽然目前市场上几乎所有机器学习工作负载,利用针对机器学习应用优化的最新Cortex-A76处理器应对已完全没有问题,但Arm机器学习事业部技术总监Ian Bratt始终认为,机器学习作为一种全新的技术,如果想在该领域更进一步,比如获得更高的计算密度,Arm也必须要“从0开始”设计一个全新的处理器架构,从而实现未来最高效率、最高吞吐量且灵活的机器学习负载处理。

由于Arm在CPU和GPU处理器领域拥有世界领先的技术,因此Arm专用机器学习处理器在设计时很好结合了在CPU与GPU方面的领先技术,实现了高效的卷积、高效的数据移动与可编程性和灵活性,目标是能够在7nm制程工艺之下,实现3 TOPs/W的性能。据Ian Bratt介绍,Arm 第一代ML处理器设计的高峰吞吐量是每秒4.6 TOPs,同时有针对激活和权重专门的硬件压缩,利用了Cortex-M的技术来支持Android NNAPI和Arm NN计算节点。同时Arm也专门配置了一套开源软件堆栈实现在ML处理器上成功便捷的部署ML。

Arm ML专用处理器的几大特征

除了开发机器学习专用处理器外,Arm目标检测处理器目前也已经发展到了第二代,支持全高清、每秒60帧的实时处理。在与Arm其他处理器进行协同工作时,OD处理器能进行预处理,先甄别出来每帧画面上的关键要素,再传给其他的处理器去处理,大幅度降低其他处理器的工作量。目前第一代OD处理器已经成功用于英国Hive,以及中国海康威视的监控摄像头。

Arm NN神经网络SDK则铺平了个别神经网络框架在 Arm 架构核心上执行的道路,让开发者可以无障碍在 Arm 平台上执行主流 AI 应用。通过上述技术解决方案,Arm 补全了AI市场的空白,也足够应对几乎所有应用场景的AI/ML需求。

Arm NN SDK铺平了个别神经网络框架在Arm架构核心上执行的道路

不同的AI需求层次,Arm如何满足?

但是,AI与ML毕竟不能“开箱即用”,需要打下坚实的基础才能应用。正如AI “马斯洛”需求层次论认为,如果把AI/ML看作是需求金字塔的顶端,自我实现(AI/ML)非常棒,但首先需要食物、水和庇护所(数据素养、数据采集和基础设施)。

数据需要有牢靠的基础,然后才可以高效地运用AI和ML

(图片来源:hackernoon)

AI需求金字塔的底部基础是利用传感器进行数据采集,与未来万物互联时代Arm所预测的2035年将会有1万亿台互联设备一致,庞大的终端设备网将进行一手的数据采集。而如果把终端设备市场比作一个舞台,那Arm毫无疑问将是真正的幕后主导者,毕竟通过采用出售IP的经营模式,迄今为止Arm设计了全球95%的智能手机芯片架构。

而后Arm倾力打造的AI/ML平台(Project Trillium)则是高可扩展的,从低至2~20 GOPs,到高至70 TOPs的场景应用,都有相应产品支持。正因如此,Arm提供的机器学习能力也并不仅限于旗舰产品,通过支持各种硬件类型和可扩展性选项,从低成本智能手机到昂贵的服务器,各种产品均可受益。Arm始终认为,在做机器学习处理时,除了需要有完整的生态平台支持外,相较大数据厂商聚焦于云端AI,更要从小做起、聚焦边缘端的计算力,满足另一种AI/ML发展方向的需求。

坐享Arm顶级“朋友圈”,助推中国AI新势力崛起

众所周知,中国有着全球最多的数据量以及巨大的应用市场,在AI狂飙突进了三、四年之久后开始面临商业化落地的现实问题,众多公司也正围绕AI构建完善的产业生态链。在行业细分领域,AI结合医疗、自动驾驶、语音交互、通用或专用芯片等呈现出各种新业态。

虽然国外厂商在通用芯片领域占据了先发优势,云端训练领先国内,但国产品牌也在积极寻求从AI专用芯片及嵌入式领域实现突围的良机,AI通用技术公司开始向产业链上下游延伸,用整套解决方案深耕垂直领域。截至2018年5月8日,全国人工智能企业数量达到4040家,其中获得过风险投资的公司达1237家。

Arm China开放平台加速AI技术落地和应用部署

Arm正携手国内合作伙伴,精心耕耘中国市场,积极推动提升中国AI硬实力的国际竞争力,而Arm顶级“朋友圈”资源也将作为有力支撑。除了在技术创新方面专为AI设计的指令集扩展、专用AI加速硬件IP和配套的软件解决方案推出外,在生态创新方面,Arm积极与AI产业各个关键节点进行合作,力图打通从芯片、硬件方案、计算库、深度学习框架到应用的全产业链;在平台建设方面,Arm在国家政府和产业伙伴的支持下成立了Arm开放人工智能实验室(Open AI Lab)与Arm人工智能生态联盟(AIEC),致力于嵌入式人工智能技术的普及。在今年3月发布的《2017中国独角兽企业发展报告》中,AIEC联盟成员商汤科技、寒武纪科技、优必选科技等多家人工智能企业榜上有名,图像识别、智能语音、AI芯片成为主要创业方向。

“双引擎”加速AI/ML多场景落地

放眼万物互联迈向万物智能时代,智能终端不仅需要具备灵活性强、功耗低的特点,同时还要拥有快速的AI/ML处理能力,这就需要高能耗比硬件芯片与高效算法的完美协作。在这一大趋势下,Arm正扮演协跑者的角色,不断推出突破性能极限的处理器芯片与神经网络机器学习软件,在通用平台Project Trillium架构的指导下,“双引擎”加速AI/ML在多场景的落地,让全球AI领先开发技术和资源惠及中国,同时推动中国AI技术辐射全球。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ARM
    ARM
    +关注

    关注

    135

    文章

    9501

    浏览量

    388990
  • AI
    AI
    +关注

    关注

    90

    文章

    38245

    浏览量

    297200

原文标题:AI的“马斯洛”需求层次,Arm如何满足?

文章出处:【微信号:arm_china,微信公众号:Arm芯闻】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片的需求和挑战

    当今社会,AI已经发展很迅速了,但是你了解AI发展历程吗?本章作者将为我们打开AI发展历程以
    发表于 09-12 16:07

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    是展望未来的AGI芯片,并探讨相关的发展和伦理话题。 各章的目录名称如下: 第1章 大模型浪潮下,AI芯片的需求与挑战免费 第2章 实现深度学习AI芯片的创新方法与架构 第3章
    发表于 09-05 15:10

    AI 芯片浪潮下,职场晋升新契机?

    在科技飞速发展的当下,AI 芯片已然成为众多行业变革的核心驱动力。从互联网巨头的数据中心,到我们日常使用的智能手机、智能家居设备,AI 芯片的身影无处不在,深刻改变着产品形态与服务模式。而对于身处
    发表于 08-19 08:58

    智能路径调度:AI驱动负载均衡的异常路径治理实践

    AI驱动的数据中心网络环境中,传统的“尽力而为”和“无差别均分”负载均衡策略已力不从心。基于路径综合质量的动态WCMP机制,通过实时感知路径状态、果断剔除异常、智能调度“健康”资源,有效解决了
    的头像 发表于 07-03 16:26 1029次阅读
    智能<b class='flag-5'>路径</b>调度:<b class='flag-5'>AI</b>驱动负载均衡的异常<b class='flag-5'>路径</b>治理实践

    Arm如何应对复杂的全球AI监管

    发布的《人工智能就绪指数报告》中《人工智能法规、监管和全球趋势》一章,由 Arm 全球政府事务主管 Vince Jesaitis 执笔,从安全性与合规性视角出发,剖析如何应对复杂的全球 AI 监管规范。
    的头像 发表于 06-26 09:42 737次阅读

    AI技术助力可持续发展

    随着人工智能 (AI) 持续为行业和社会带来变革,如何平衡其快速增长与环境责任的紧迫性已成为关键考量。诚然 AI 会致使巨大的能源需求,但它也可以成为应对更广泛的可持续
    的头像 发表于 06-19 10:43 1046次阅读

    【「零基础开发AI Agent」阅读体验】+ 入门篇学习

    4.智能体具有自主规划和行动的能力 5.大模型分为3个层次:基础层(心脏)、垂直/行业层(动脉)、应用层(毛细血管) 6.AI Agent具备更显著的去中心化特点,能够充分满足每个人独特的需求
    发表于 05-02 09:26

    Arm 行业报告看芯片产业应如何构建面向未来十年的技术基石

    提供了多元化的视点,深度解读了 AI 时代启幕之际的行业现状与趋势,探讨了行业应如何在满足 AI 带来的算力需求同时,解决能效、安全性与可靠性等挑战。 报告指出,为应对
    的头像 发表于 04-25 14:40 1677次阅读

    DeepSeek推动AI算力需求:800G光模块的关键作用

    随着人工智能技术的飞速发展AI算力需求正以前所未有的速度增长。DeepSeek等大模型的训练与推理任务对算力的需求持续攀升,直接推动了服务器、光通信设备以及数据中心基础设施的升级。特
    发表于 03-25 12:00

    Banana Pi 发布 BPI-AI2N &amp; BPI-AI2N Carrier,助力 AI 计算与嵌入式开发

    RZ/V2N——近期在嵌入式世界2025上新发布,为 AI 计算、嵌入式系统及工自动化提供强大支持。这款全新的计算平台旨在满足开发者和企业用户对高性能、低功耗和灵活扩展的需求。 []() 领先的计算
    发表于 03-19 17:54

    云知声亮相AI产业发展机遇与应对研讨会

    近日,山东省济南市历城区召开“AI产业发展机遇与应对”专题研讨会,邀请多位行业专家和企业代表参与,共同探讨AI技术的最新发展趋势以及面临的挑
    的头像 发表于 03-10 17:40 986次阅读

    Arm 推出 Armv9 边缘 AI 计算平台,以超高能效与先进 AI 能力赋能物联网革新

    电子发烧友网报道(文/黄晶晶)当下,快速发展AI 正不断赋予边缘设备越来越先进的智能性,使边缘设备胜任越来越重要的任务。为应对边缘侧持续增长的 AI
    的头像 发表于 03-06 11:43 1788次阅读
    <b class='flag-5'>Arm</b> 推出 Armv9 边缘 <b class='flag-5'>AI</b> 计算平台,以超高能效与先进 <b class='flag-5'>AI</b> 能力赋能物联网革新

    Arm平台引领AI云计算革新

    我们正处于一个由人工智能 (AI) 定义的计算时代,其转型速度空前迅速。Arm 一直致力于通过工程创新和技术发展,以可持续且可扩展的方式加速 AI 未来。而这样的愿景也在
    的头像 发表于 01-03 15:26 1041次阅读

    ArmAI需求持续爆发,平台解决方案加速应用落地

    发烧友网策划了《2025年半导体产业展望》专题,收到数十位国内外半导体创新领袖企业高管的前瞻观点。其中,电子发烧友特别采访了Arm中国区业务全球副总裁邹挺,以下是他对2025年半导体市场的分析与展望。 Arm中国区业务全球副总裁邹挺 A
    发表于 12-27 13:59 1356次阅读
    <b class='flag-5'>Arm</b>:<b class='flag-5'>AI</b><b class='flag-5'>需求</b>持续爆发,平台解决方案加速应用落地

    一文详解Arm架构Armv9.6-A中的最新功能

    计算的需求,包括 AI 的兴起、机器学习 (ML) 和芯粒 (chiplet) 技术的使用,以及应对高级安全威胁。持续创新确保了 Arm 架构的普及性、普适性能、出色能效、安全性和开发
    的头像 发表于 12-17 10:22 4694次阅读
    一文详解<b class='flag-5'>Arm</b>架构Armv9.6-A中的最新功能