0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

特斯拉Autopilot计算机视觉及神经网络最新研究进展

8g3K_AI_Thinker 来源:未知 作者:胡薇 2018-06-13 09:34 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在上个月的 Train AI 会议上,特斯拉 AI 及计算机视觉部门总监 Andrej Karpathy 谈了自己对当前 Autopilot 发展的见解,Karpathy 表示他目前正利用特斯拉无人车队的大量数据,试图通过训练特斯拉的神经网络模型,来改善 Autopilot 的自动驾驶能力。

首先,他简要介绍了计算机视觉软件的发展历史,以及他称之为 “software2.0” 的过渡时代。所谓的 “software2.0” 时代,是指机器学习能够代替工程师,设计并创建应用程序。

进一步,他解释了它是如何应用于特斯拉日常的开发工作,特别是在无人驾驶方面的应用。

工程师通常把特斯拉的研发车称为“机器人”。因此,Karpathy 表示特斯拉拥有全球规模最大的机器人集群,部署了超过 25 万辆车。而现在他要做的是,训练这些机器人并让它们学会自己开车。

Karpathy 提到加入特斯拉 11 个月以来,他在特斯拉的 Autopilot 部门中推出了更多版本的“软件 2.0”,他用这些图像说明了这一点:

这是在今年3月份推出的 Autopilot 软件更新中推出的,他所指的很可能是重写了特斯拉使用的神经网络模型,从而显著地改善了 Autopilot 的性能。

而现在神经网络模型正在慢慢接收特斯拉 Autopilot 的代码,Karpathy 强调该团队正在致力于数据标签和创建基础数据集架构的研究。

Karpathy 还谈到,自从加入特斯拉以来,他每天睡眠的时间大大缩短,这其中的原因主要是日常工作由实际建模和算法研究转向了处理大量数据库而导致的:

他举了个例子,描述了由于不同地区车道种类的多样性,标记这些不同类型车道线的工作也将变得相当复杂。

他提到的另一个例子是关于交通信号灯的数据集,他说这个数据集真的“非常疯狂”,如下图所示:

Karpathy 解释到构建数据集需要大量的 “时间和精力”,这是非常 “痛苦的” 的一项工作。这就是为什么他们正试图在特斯拉建立新工具上创建 “ 软件 2.0 ”,从而帮助他们完成数据库构建的工作。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 特斯拉
    +关注

    关注

    66

    文章

    6404

    浏览量

    131016
  • 计算机视觉
    +关注

    关注

    9

    文章

    1714

    浏览量

    47457

原文标题:Andrej Karpathy:特斯拉Autopilot计算机视觉及神经网络最新研究进展

文章出处:【微信号:AI_Thinker,微信公众号:人工智能头条】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    几年神经计算及类脑芯片的重大进展。 一、云端使用的神经形态计算与类脑芯片 神经形态
    发表于 09-17 16:43

    神经网络的并行计算与加速技术

    问题。因此,并行计算与加速技术在神经网络研究和应用中变得至关重要,它们能够显著提升神经网络的性能和效率,满足实际应用中对快速响应和大规模数据处理的需求。
    的头像 发表于 09-17 13:31 892次阅读
    <b class='flag-5'>神经网络</b>的并行<b class='flag-5'>计算</b>与加速技术

    如何在机器视觉中部署深度学习神经网络

    人士而言往往难以理解,人们也常常误以为需要扎实的编程技能才能真正掌握并合理使用这项技术。事实上,这种印象忽视了该技术为机器视觉(乃至生产自动化)带来的潜力,因为深度学习并非只属于计算机科学家或程序员。 从头开始:什么
    的头像 发表于 09-10 17:38 703次阅读
    如何在机器<b class='flag-5'>视觉</b>中部署深度学习<b class='flag-5'>神经网络</b>

    无刷电机小波神经网络转子位置检测方法的研究

    MATLAB/SIMULINK工具对该方法进行验证,实验结果表明该方法在全程速度下效果良好。 纯分享帖,点击下方附件免费获取完整资料~~~ *附件:无刷电机小波神经网络转子位置检测方法的研究.pdf
    发表于 06-25 13:06

    神经网络RAS在异步电机转速估计中的仿真研究

    ,在一定程度上扩展了转速估计范围。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:神经网络RAS在异步电机转速估计中的仿真研究.pdf【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权
    发表于 06-16 21:54

    计算机网络入门指南

    计算机网络是指将地理位置不同且具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统、网络管理软件及网络通信协议的管理和
    的头像 发表于 04-22 14:29 1867次阅读
    <b class='flag-5'>计算机网络</b>入门指南

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不进行任何
    的头像 发表于 02-12 16:41 1259次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1324次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1599次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络的学习算法。该算法通过计算每层网络的误差,并将这
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1358次阅读

    加州理工学院开发出超100GHz时钟速度的全光计算机

    递归神经网络计算设计,利用线性和非线性光学操作的超快特性,避免电子操作,在光域内实现了高速运算。其核心是光学实现的递归神经网络,以激光脉冲处理数据,光学腔充当存储器和计算层,光信号在
    的头像 发表于 01-23 10:32 769次阅读

    王欣然教授团队提出基于二维材料的高效稀疏神经网络硬件方案

    two-dimensional semiconductor ferroelectric field-effect transistors”为题发表最新研究进展,报道了基于二维材料的高效稀疏神经网络硬件解决方案
    的头像 发表于 01-13 10:41 907次阅读
    王欣然教授团队提出基于二维材料的高效稀疏<b class='flag-5'>神经网络</b>硬件方案

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能的机器学习模型。近年来,由于
    的头像 发表于 01-09 10:24 2265次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法