0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过特征参数优化电感器的设计

电子工程师 来源:未知 作者:李倩 2018-04-18 10:18 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

感应器件在使用时会表现出一系列电磁效应,因此将其用作任何产品应用的组件时,均不能忽略电磁效应。借助 COMSOL Multiphysics 中“AC/DC 模块”提供的工具,您可以简单准确地模拟及设计电感器,同时还能计算出产品应用所需要的器件特征参数。

电感器的基本物理原理

将一根导线(绕组或线圈)缠绕在一块典型的磁性材料(铁芯)上,就能制作出一个最简易的电感器。电感器的工作原理基于电感这一概念,即电感器周围形成的磁场会阻碍通过器件的电流的变化。

由缠绕在铁芯上的铜绕组构成的简易电感器。红色箭头表示电流方向,蓝色箭头表示铁芯外的磁场。电流变化也会改变穿过绕组的磁通量,并在绕组两端产生一个阻碍电流变化的电势。

电感是描述电流变化受阻碍程度的参数,通常用 L 表示,它可以完全表征一个理想的电感器。不幸的是,我们生活在一个非理想的世界,实际的电感器还会表现出电阻效应(低频下很重要,由电阻 R 表征)及电容效应(高频下很重要,由电容 C 表征),二者会引起自谐振。事实上,我们可以借助 RLC 电路模型或者该模型的一些扩展来完全理解三维电感器。

一个可用于模拟真实电感器行为的等效电路。

电感特性可被应用于许多不同的领域,它即可以单独发挥效用,也可与电容器电阻器其他电路元件配合使用。当通交流电时,单个电感器能够充当低通滤波器,而与电容器串联的电感器可充当谐振滤波器或带通滤波器。电感器在许多日常生活的关键装置中也发挥着重要作用,例如开关供电以及与射频天线连接的匹配电路。行人靠近时可自动切换信号的智能交通灯便使用了电感式传感器,真是公路交通的好帮手!

通过特征参数优化电感器的设计

如果您的设备中有电感器,那么一定要了解电感器的某些特征参数,才能充分理解设备整体是如何运行的。这些关键参数包括电感,可能还包括电阻、电容、谐振频率、Q 因子及谐振频率的峰值宽度。这些参数决定了滤波应用的截止频率或通带等因素,或是匹配电路的电抗。

使用电感器时,另一个潜在的问题在于电磁干扰(electromagnetic interference,简称 EMI) 或电磁兼容(electromagnetic compatibility,简称 EMC)。电感器会在线圈周围产生磁场,对于近年来组装得越来越紧凑的电路而言尤为如此,因此您可能需要知道该磁场会对附近其他组件或器件产生怎样的影响。

确实存在一些粗略的解析公式或经验公式可用于描述上述 RLC 参数,但是这些公式无法满足现代器件设计的高精度要求。假如器件并非长方体、圆柱体、螺旋或圆环等少数几种能够简单解析处理的形状,难度就更加明显。对于涉及 EMI 和 EMC 的感应器件来说,更难对其周围的磁场形状和降低程度进行准确描述。

此外,为了增加电感并限制周围的磁场,您可能会想用非线性磁性材料来制作电感器的铁芯。然而这会增加一层计算复杂度,进而使解析或经验公式的近似增加一层,最终导致结果更不可信。为了获取完全准确的三维电感器件特征参数,我们选择了计算模拟这一更为可靠的解决方案。

在 COMSOL Multiphysics 中模拟三维电感器

COMSOL Multiphysics 提供完整表征安装在产品应用中电感器所需的全套工具。“案例下载”中的三维电感器建模教学模型是AC/DC 模块的初步入门模型,它清晰明了地展示了软件的一些主要功能。该模型对于学习如何表征和设计电感器十分有用。

有限元模型中的电感器几何结构。

在实际器件中,有多种方式可以驱动电流通过电感器。我们可以施加特定的电压、电流或功率。这可能是一个常数值,也可能是振荡值,设置可能与时间存在更复杂的函数关系。在此应用示例中,单匝线圈及集总端口特征(分别用于低频和高频)使用电流来驱动导体,并演示了如何在各类产品应用中实际驱动线圈。

借助 COMSOL Multiphysics,您不仅可以毫不费力地建立电路模型(在 COMSOL 软件中创建,或者通过导入 SPICE 网表创建),随后还可以将这些电路模型与有限元模型关联起来。因为 COMSOL Multiphysics 可以识别出哪些部件可以耦合在一起———并在便捷的下拉框中列出了这些选项,所以您可以利用电感器全三维模型和电路模型之间的内置连接特征,轻松地将电感器与驱动电路连接起来。

在下拉框中选择输入特征时,电感器终端(蓝色部分)会自动耦合至电路模型。

众所周知,由于集肤效应,在高频下(您的电感器可能在此频率下工作)电感器内的电流会限制在导体表面附近。在本文的应用示例中,集肤效应已包含在 COMSOL Multiphysics 的阻抗边界条件中。解析薄层中的电流是一个计算量非常大的过程,将其简化为边界条件能节省时间,从而加速对设计的研究。

高频下线圈表面产生的电流(Am-2)。请注意,此时电流的非均匀本性被完全捕获。

重要的是,电感器本身的 Q 因子取决于铁芯的材料属性,尤其是损耗。COMSOL Multiphysics 具有强大的灵活性,您可以随时根据需要修改材料属性,从而在模型中加入损耗。软件自动完成了包括全部涡电流损耗在内的计算,在这里,铁芯中的介电损耗通过用户定义的介电常数 εr的虚部贡献添加到了模型中。您可以使用相同的便捷方法,通过复值磁导率 μr在模型中加入磁损耗。

对电感器模型结果进行后处理及分析

如果您希望赢得管理层的支持,或者给客户留下深刻印象,COMSOL Multiphysics 的内置后处理功能便能祝您一臂之力,只需简单点击几下就能绘制出清晰的结果图。软件能够自动计算并提供用于评估电感器设计的计算变量,例如磁场、电流及损耗率。三维电感器应用示例还对如何创建与下图类似的详细绘图进行了演示。

铁芯中材料较薄的地方,其表面的磁通密度(T)更高,这是因为铁芯输送的磁通量基本恒定。线圈中,导体两端形成了一个局部电势(V)。

只需多花一点时间,便可以扩展结果图像,添加如流线或箭头图的其他可选的绘图类型。

在铁芯中,磁通密度显示在表面上(T)。在线圈中,电流密度(Am-2)流线表示弯曲零件内电流密度更高。周围区域内的箭头表示磁场方向。

最后,为了实现模型的最终目的,您需要计算出电感器的阻抗值和谐振频率。COMSOL Multiphysics 可自动计算许多变量,电感器在每个频率下的精确阻抗就是其中之一,因此您可以轻松地将这些参数绘制成图像。借助内置的real和imag算子,您可以绘制阻抗的实部(电阻)和虚部(电感/电容),从中可以很容易地观察到谐振。

阻抗 Z 的实部(左图)和虚部(右图)显示了电感和电容行为之间的谐振与切换。

在虚部图中,您还可以观察到经过谐振频率时,符号由正转变为负,代表器件在高频下由电感主导转变为电容主导,这与预期完全一致。

将热效应纳入考虑以扩展电感器模型

COMSOL Multiphysics 旨在将不同的物理效应便捷地集成在同一个模型中——这也正是软件的“多物理场”特征。我们可以将电磁加热纳入考虑以扩展此电感器模型。线圈中的传导电流,涡电流,以及铁芯中的介电/磁损耗都会产生热量,这些热量会通过高导热金属部件进行扩散,并进入到周围的器件和电路板中。使用感应加热接口,您可以方便地在感应器件模型中加入加热速率和温度分布的计算。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电感器
    +关注

    关注

    20

    文章

    2637

    浏览量

    73230
  • 等效电路
    +关注

    关注

    6

    文章

    296

    浏览量

    33737

原文标题:借助 COMSOL 评估三维电感器的设计

文章出处:【微信号:COMSOL-China,微信公众号:COMSOL】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    HCB1175功率电感器

    HCB1175功率电感器HCB1175作为台达(DELTA)旗下HCB系列中的一款高性能功率电感器,采用先进的表面贴装(SMT)工艺设计,专为满足现代电子设备对高电流、高密度电源的严苛需求而打造
    发表于 12-09 08:53

    ‌IHB系列大电流滤波电感器技术解析与应用指南

    Vishay/Dale IHB滤波电感器具有1μH至47000μH电感范围、~2500VRMS~ 介电额定值以及-55°C至+130°C工作温度范围。此电感器具有印刷电路安装、预镀锡引线以及可选
    的头像 发表于 11-14 13:45 275次阅读
    ‌IHB系列大电流滤波<b class='flag-5'>电感器</b>技术解析与应用指南

    Vishay Dale IFDC-5050HZ屏蔽型功率电感器技术解析与应用指南

    Vishay/Dale IFDC-5050HZ屏蔽表面贴装器件(SMD)功率电感器采用12.3mmx12.3mmx8mm封装。这些SMD功率电感器采用屏蔽铁氧体结构,0A时电感范围为3.3μH至
    的头像 发表于 11-13 10:19 292次阅读
    Vishay Dale IFDC-5050HZ屏蔽型功率<b class='flag-5'>电感器</b>技术解析与应用指南

    Vishay Dale IDCS3014铁氧体功率电感器技术解析与应用指南

    Vishay/Dale IDCS3014铁氧体功率电感器采用屏蔽、组装的铁氧体结构,封装尺寸为7.6mmx7.6mmx3.5mm。IDCS3014系列的电感范围为3.μH至1000μH,电感容差为
    的头像 发表于 11-11 15:05 247次阅读
    Vishay Dale IDCS3014铁氧体功率<b class='flag-5'>电感器</b>技术解析与应用指南

    Vishay Dale IHLL-0806AZ-1Z功率电感器技术解析与应用指南

    Vishay/BLUETOOTH IHLL-0806AZ-1Z功率电感器可处理高瞬态电流尖峰而不会导致 电感饱和。该款电感器采用磁保护复合材料制造而成。IHLL-0806AZ-1Z功率电感器
    的头像 发表于 11-11 14:12 271次阅读
    Vishay Dale IHLL-0806AZ-1Z功率<b class='flag-5'>电感器</b>技术解析与应用指南

    Vishay Dale IHLP505WFD-5A汽车用电感器技术解析与应用指南

    Vishay/Dale IHLP505WFD-5A汽车用电感器具有宽端子,可提高机械稳定性以及冲击和振动性能。该款电感器可在高达155°C的工作温度下正常运行。IHLP505WFD-5A电感器为磁
    的头像 发表于 11-11 14:04 241次阅读
    Vishay Dale IHLP505WFD-5A汽车用<b class='flag-5'>电感器</b>技术解析与应用指南

    Vishay IHV系列功率电感器技术解析与应用指南

    Vishay IHV功率电感器是大电流和径向引线滤波电感器。这些电感器的额定电感高达200μH,最大直流电流范围为20A至60A。IHV滤波电感器
    的头像 发表于 11-11 11:23 408次阅读
    Vishay IHV系列功率<b class='flag-5'>电感器</b>技术解析与应用指南

    ‌IHLP1212-EZ-1Z功率电感器技术解析与应用指南

    Vishay/Dale IHLP1212-EZ-1Z功率电感器是低DCR电感器,有1.2mm、1.5mm和2mm高度可供选择。这些电感器是磁屏蔽型电感器,可处理高瞬态电流尖峰而不会饱和
    的头像 发表于 11-10 11:06 262次阅读
    ‌IHLP1212-EZ-1Z功率<b class='flag-5'>电感器</b>技术解析与应用指南

    TLM1211F-121LE大功率贴片功率电感器现货库存

    TLM1211F-121LE是DELTA(台达电子)推出的 TLM1211F 系列中的一款大功率贴片功率电感器。凭借其卓越的性能,广泛应用于显卡、服务以及消费类电子主板等对电流和频率要求极高
    发表于 08-11 09:20

    同惠LCR测试仪TH2830在电感器品质评估中的作用

    随着电子技术的快速发展,电感器作为关键的无源元件,在通信设备、电源管理、射频电路等领域的应用日益广泛。电感器的品质直接影响电路系统的稳定性与性能,因此对电感参数的精准评估成为电子制造与
    的头像 发表于 05-21 16:13 587次阅读
    同惠LCR测试仪TH2830在<b class='flag-5'>电感器</b>品质评估中的作用

    变压电感器设计手册

    本书涉及了用于轻质量、高频率航空航天变压和低频率、工业用变压设计的全部关键元器件。 修订和扩展的目的在于展示磁器件设计领域当前的技术水平,此第三版给出了变压电感器设计的实际方法
    发表于 05-13 17:04

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    了主要的电路寄生参数以及 RC 电路。图中,Vds 为 SiC-MOSFET 模块关断电压;Vdc 为双脉冲实验电源电压;Lds 为 SiC-MOSFET 模块内部寄生电感;L 表示负载电感器;Lbus
    发表于 04-23 11:25

    TDK推出大电流车载PoC绕线电感器ADL4532VK系列

    TDK株式会社近日宣布,将扩展其车载同轴电缆供电(PoC)的绕线电感器产品线,推出全新的ADL4532VK系列。该系列电感器尺寸为4.5x3.2x3.2mm(长x宽x高),预计将于2025年2月
    的头像 发表于 02-18 10:40 1061次阅读

    村田制作所开发超微型016008片状电感器

    株式会社村田制作所近日宣布,已成功启动对超小等级的016008尺寸(0.16mm × 0.08mm)片状电感器的开发工作,并正全力以赴推进其商品化进程。 这款电感器尺寸极为小巧,堪称行业内的佼佼者
    的头像 发表于 01-10 14:43 943次阅读

    偏置电路与宽带偏置电路(Bias-Tee)-----电感器比较与选择

    或者在某个频段衰减过大。图2为放大器等芯片配置的典型RF偏置,提供电流通常通过电感器提供(图2中的L1)。RF输出通过交流耦合电容与该直流偏置隔离(图2中的C2)。电感和交流耦合电容的这种布置通常称为
    发表于 12-17 09:46