0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

清华微电子发布AI芯片 专注于神经网络计算,可用于ai,图像等多种应用

M8kW_icbank 2018-01-29 15:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

华大学微纳电子系副系主任尹首一老师带队设计了低功耗AI芯片Thinker,专注于神经网络计算,可以动态地调整计算和内存需求,用于视频、图像、语音等多种AI任务应用。

在北京清华大学的一个办公室里,一块名为Thinker的芯片正在处理摄像机采集到的视频数据,同时将其中提取的人脸数据与数据库中现有的做匹配。几秒钟后,这一块Thinker芯片又在处理中文语音命令。

Thinker是一块由清华微电子研究所设计的AI芯片,用于支持神经网络计算,它最大的特点是功耗非常小——只需要八节AA电池就够让它运行一整年。

清华微电子发布AI芯片 专注于神经网络计算,可用于ai,图像等多种应用

Thinker芯片可以动态地调整计算和内存需求,以满足正在运行的软件的需求。这一点非常重要,因为许多实际生活中的AI应用程序(识别图像中的对象或理解人类语言)需要不同类型的具有不同层数的神经网络的组合。

2017年12月,《IEEE固态电路杂志》(IEEE Journal of Solid-State Circuits)上发表了一篇关于Thinker的设计理念的论文,《IEEE固态电路杂志》是计算机硬件设计领域的国际顶级期刊。

事实上,如今中国科技领域发展迅猛,Thinker芯片仅仅是其中的一个例子。在目前人工智能硬件优化的热潮中,中国的半导体行业正面临一个千载难逢的发展机遇。计算机芯片是人工智能成功的关键,因此中国需要发展自己的AI芯片,使其成为真正的技术力量。

尹首一老师(清华大学微纳电子系副系主任和Thinker论文的主要作者)说:“和以前中国追赶信息科技革命的速度相比,这次中国对人工智能趋势的反应速度是最快的”,因为中国在神经网络处理器的研发和设计上面已经做了很多努力。

尽管现在中国已成为太阳能电池板和智能手机的制造中心,中国的半导体产业却远远落后于美国。根据中国半导体行业协会所公布的数据,2017年1月至9月,中国的进口集成电路总额达到了1828亿美元,比上一年增长了13.5%。与此同时,包括谷歌和英特尔在内的美国科技巨头与初创公司们都在开发人工智能专用芯片。

作为应对政策之一,2017年12月,中国工业和信息化部发布了为期三年的人工智能发展计划(《促进新一代人工智能产业发展三年行动计划(2018-2020年)》),政府制定了到2020年要让神经网络处理芯片实现量产的目标。

清华微电子所尹首一老师的团队之所以要开发Thinker芯片,是因为在端设备上运行AI应用时,功能强大的GPUFPGA芯片不仅价格昂贵,而且功耗过大,不适合运用到靠电池供电的小型设备上。

相比而言,Thinker则可以嵌入到很多小型设备中,包括智能手机、手表、家用机器人、或远程控制的仪器设备等。尹首一老师的团队计划在今年三月推出第一款搭载Thinker芯片的端智能产品。

除了Thinker芯片之外,中国还有很多类似的AI芯片项目正在进行中。 1月下旬,中国科学院计算技术研究所(ICT)的一个研究小组将与当地半导体制造商合作生产一批用于机器人的芯片——Dadu。这个名为Dadu的芯片有两个核心处理器——一个用于运行神经网络,另一个用于控制运动。神经核心处理器可以处理机器视觉,同时也可以对到某一地点的最佳路径或是拿取某一物品的运动轨迹进行规划。

韩银和(中国科学院计算技术研究所研究员和机器人芯片项目负责人)设想了一系列应用,包括可以运送咖啡的机器人还有可用手势控制的无人机。他说,在中国开发这样一个系统的好处在于中国有庞大的用户群,用户群越大,基于用户体验的芯片设计的更新迭代速度就会越快。

除了清华微电子所与中科院计算所外,现在也有越来越多的中国公司开始开发AI芯片。比如中科睿芯(SmarCo),中科睿芯是一家总部位于北京的创业公司,主要设计用于数据中心和处理视频片段的AI芯片。

“将来,只生产芯片的公司会越来越少,”位于北京的创业公司地平线机器人( Horizon Robotics)的ASIC设计总监马凤祥如是说。地平线公司专注于将AI技术应用于智能摄像头和自动驾驶上,2017年12月,地平线发布了两款计算机视觉芯片,它们可以让车辆识别行人,也可以帮助商场研究来往客流规律。地平线自2015年成立以来,公司已发展到300多名员工。

马凤祥表示,地平线机器人不是一家芯片公司,我们为自己的产品设计芯片,以求达到提高产品性能还有降低生产成本的效果。

目前,中国AI芯片研究人员需要解决许多问题:如何将其芯片设计商业化,如何扩大规模,以及如何驾驭人工智能所改变的计算领域。虽然有诸多挑战,但中国的芯片研究人员最不缺少的便是雄心壮志。ICT的韩银和说:“作为芯片研究人员,我们都有梦想,未来我们能取得多大的进展,请世界拭目以待。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    462

    文章

    53552

    浏览量

    459302
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106810
  • AI
    AI
    +关注

    关注

    89

    文章

    38162

    浏览量

    296846
  • 人工智能
    +关注

    关注

    1813

    文章

    49750

    浏览量

    261619

原文标题:清华微电子所最新AI芯片深度解读

文章出处:【微信号:icbank,微信公众号:icbank】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能   该库具有
    发表于 10-29 06:08

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    芯片 ③数模混合电路的突破 ④可重构性架构 ⑤情感计算单元 ⑥决策与行动单元 ⑦多种神经网络多种学习算法 2)AGI
    发表于 09-18 15:31

    【「AI芯片:科技探索与AGI愿景」阅读体验】+具身智能芯片

    、步态识别和跌倒检测,也可以通过检测门的打开、关闭来预防犯罪。 三、具身智能系统与芯片 具身智能汇集了跨学科领域的技术。是为一台进行AI运算的计算机提供了有形或可见的形式,即机上感知
    发表于 09-18 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    AI芯片不仅包括深度学细AI加速器,还有另外一个主要列别:类脑芯片。类脑芯片是模拟人脑神经网络
    发表于 09-17 16:43

    【「AI芯片:科技探索与AGI愿景」阅读体验】+化学或生物方法实现AI

    )大脑的能效远高于目前的AI芯片 都知道计算机算的快,但是能取代大脑吗?肯定是不行的。大脑在处理复杂信息方面的能力是远超计算机的。是不可替代的。 2)细菌
    发表于 09-15 17:29

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的未来:提升算力还是智力

    结果。 耦合振荡计算与传统的计算的区别: 3、神经符号计算 神经符号极端是指将基于神经网络的方法
    发表于 09-14 14:04

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    Transformer和视觉Transformer模型。 ViTA是一种高效数据流AI加速器,用于在边缘设备上部署计算密集型视觉Transformer模型。 2、射频神经网络 2.1线
    发表于 09-12 17:30

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片的需求和挑战

    ②Transformer引擎③NVLink Switch系统④机密计算⑤HBM FPGA: 架构的主要特点:可重构逻辑和路由,可以快速实现各种不同形式的神经网络加速。 ASIC: 介绍了几种ASIC AI
    发表于 09-12 16:07

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    想到,除了研究大脑的抽象数学模型外,能否抛弃传统的芯片实现方式,以化学物质和生物组件、材料及相关现象来构建人工神经网络或提取其功能来用于AI处理,甚至直接用生物体来实现
    发表于 09-06 19:12

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    、集成芯片、分子器件与分子忆阻器,以及打印类脑芯片。 第五章至第八章分别探讨用化学或生物方法实现AIAI在科学发现中创新应用、实现
    发表于 09-05 15:10

    AI 边缘计算网关:开启智能新时代的钥匙​—龙兴物联

    智能化决策的关键。卷积神经网络图像识别方面表现卓越,在智能工厂产品质量检测中,能快速准确识别产品缺陷;循环神经网络擅长处理时间序列数据,可对设备故障进行精准预测。 在通信技术与协议支持上,A
    发表于 08-09 16:40

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    神经网络。 材料创新 这部分将视角投向化学与生物领域,探索 “湿件”的可能性,重新定义AI芯片的形态。 化学计算开辟了全新路径,通过酸碱反应构建逻辑门与
    发表于 07-28 13:54

    Nordic收购 Neuton.AI 关于产品技术的分析

    Nordic Semiconductor 2025 年收购了 Neuton.AI,这是一家专注超小型机器学习(TinyML)解决方案的公司。 Neuton 开发了一种独特的
    发表于 06-28 14:18

    Banana Pi 发布 BPI-AI2N & BPI-AI2N Carrier,助力 AI 计算与嵌入式开发

    和 Renesas一直致力推动开源生态的发展,并积极合作打造高效、开放的计算平台。BPI-AI2N & BPI-AI2N Carrier 的
    发表于 03-19 17:54

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工
    的头像 发表于 01-09 10:24 2265次阅读
    人工<b class='flag-5'>神经网络</b>的原理和<b class='flag-5'>多种</b><b class='flag-5'>神经网络</b>架构方法