0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ADAS要如何运用深度学习?

电子工程师 来源:网络整理 作者:工程师曾暄茗 2018-07-15 11:28 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

北京交通大学电子信息工程学院袁雪副教授给我们讲解了在高级辅助驾驶系统(ADAS)中的多任务深度学习框架的应用。

内容提纲:

ADAS系统包括车辆检测、行人检测、交通标志识别、车道线检测等多种任务,同时,由于无人驾驶等应用场景的要求,车载视觉系统还应具备相应速度快、精度高、任务多等要求。对于传统的图像检测与识别框架而言,短时间内同时完成多类的图像分析任务是难以实现的。

袁雪副教授的项目组提出使用一个深度神经网络模型实现交通场景中多任务处理的方法。其中交通场景的分析主要包括以下三个方面:大目标检测(车辆、行人和非机动车),小目标分类(交通标志和红绿灯)以及可行驶区域(道路和车道线)的分割。

这三类任务可以通过一个深度神经网络的前向传播完成,这不仅可以提高系统的检测速度,减少计算参数,而且可以通过增加主干网络的层数的方式提高检测和分割精度。

以下为当天分享的内容总结。

图文分享总结

一、任务分析

WHO在2009年统计的一个数据显示,在全世界范围内每年由交通事故死亡的人数有123万人。但是我们知道,在朝鲜战争中,整个战争死亡的人数也差不多一百多万。也就是说,每年死于交通事故的人数差不多等于一次非常惨烈的战争的死亡人数了。根据WHO统计,在全世界范围内每年由交通事故造成的死亡人数有123万之多;而发生交通事故90%是由司机人为原因造成的,比如注意力不集中、超速、安全意识弱等等。所以目前减少交通事故的最主要途径通过采用高级辅助驾驶系统(ADAS)就是减少认为错误。

对于ADAS系统,基本上包括这些功能:夜视辅助、车道保持、司机提醒、防撞提醒、车道变换辅助、停车辅助、碰撞疏解、死角障碍物检测、交通标志识别、车道线偏移提醒、司机状态监测、远光灯辅助等。这些功能是ADAS所必备的。

为了实现这些功能,一般其传感器需要包括视觉传感器、超声波传感器、GPS&Map传感器、Lidar传感器、Radar传感器,还有一些别的通信设备。但是我们在市面上看到的大多数传感器其功能其实是比较少的,例如mobile I,它只有车道保持、交通标志识别、前车监测和距离监测的功能,但并不全面。从厂家或者用户的角度来说,自然我们希望能用最便宜的传感器来完成更多ADAS的功能。最便宜的传感器基本上就是视觉传感器。所以我们设计方案时就想,能不能通过算法将视觉传感器实现更多ADAS系统的功能呢?这就是我们整个研发的初衷。

此外,我们还需要考虑ADAS的一些特点。ADAS系统(包括无人驾驶)是在一个嵌入式平台下进行的,也就是说它的计算资源很少。那么我们也必须考虑如何在这样一个计算资源非常少的基础上,保证ADAS系统能够快速且高精度地响应,同时还能保证多任务的需求。这是我们第二个要考虑的问题。

ADAS要如何运用深度学习?

为了解决以上两个问题,我们首先把ADAS的任务分解一下。如图所示,我们将ADAS的任务分解成目标检测与识别、图像分割、摄像机成像目标跟踪、图像分割。我们过去一年多的研发工作其实就是,用一个深度学习框架来同时实现上述这四个的功能。

对于一个前向传播的网络,其计算量和计算时间主要取决于它的参数数量,而80%的参数都来自全链接层,所以我们的第一个想法就是去掉全链接层。其次,网络越深,它的参数就会越多所以如果我们把目标检测与识别、图像分割、摄像机成像目标跟踪、图像分割做成四个网络的话,就会有X4倍的参数。

ADAS要如何运用深度学习?

所以针对这两个考量,我们用一个主干的网络来做前面的运算,然后在后面再根据具体的任务分成多个小的分支加到主干网络上。这样多个图像处理的任务就可以通过一个主干网络的前向传播来完成了,其参数大大减少,计算速度也变的更快。同时我们也能实现多个任务同时进行的需求。另外,在最后我们还可以将多个结果进行融合,驾到训练过程的调整中,这样就可以提高我们结果的可信性。

但是在这个过程中我们也碰到一些难点。第一个难点就是我们在同一个网络中需要将较大的目标(例如车辆)和较小的目标(例如交通标志)同时检测出来。第二个难点是,测速测距时我们需要的目标的位置是非常精确的,目前这个问题我们还没有解决。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 无人驾驶
    +关注

    关注

    99

    文章

    4255

    浏览量

    126041
  • ADAS系统
    +关注

    关注

    4

    文章

    228

    浏览量

    26372
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123905
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标准判定 精密
    的头像 发表于 11-27 10:19 53次阅读

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络”、“黑箱”、“标注”等术语。这些概
    的头像 发表于 09-10 17:38 692次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    深度学习对工业物联网有哪些帮助

    深度学习作为人工智能的核心分支,通过模拟人脑神经网络的层级结构,能够自动从海量工业数据中提取复杂特征,为工业物联网(IIoT)提供了从数据感知到智能决策的全链路升级能力。以下从技术赋能、场景突破
    的头像 发表于 08-20 14:56 757次阅读

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心一言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这一话题一直被
    的头像 发表于 08-13 09:15 3917次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    嵌入式AI技术之深度学习:数据样本预处理过程中使用合适的特征变换对深度学习的意义

      作者:苏勇Andrew 使用神经网络实现机器学习,网络的每个层都将对输入的数据做一次抽象,多层神经网络构成深度学习的框架,可以深度理解数据中所要表示的规律。从原理上看,使用
    的头像 发表于 04-02 18:21 1281次阅读

    ADAS1000-4 adi

    电子发烧友网为你提供ADI(ADI)ADAS1000-4相关产品参数、数据手册,更有ADAS1000-4的引脚图、接线图、封装手册、中文资料、英文资料,ADAS1000-4真值表,ADAS
    发表于 03-10 18:40
    <b class='flag-5'>ADAS</b>1000-4 adi

    ADAS1000-1 adi

    电子发烧友网为你提供ADI(ADI)ADAS1000-1相关产品参数、数据手册,更有ADAS1000-1的引脚图、接线图、封装手册、中文资料、英文资料,ADAS1000-1真值表,ADAS
    发表于 03-10 18:39
    <b class='flag-5'>ADAS</b>1000-1 adi

    ADAS1000-3 adi

    电子发烧友网为你提供ADI(ADI)ADAS1000-3相关产品参数、数据手册,更有ADAS1000-3的引脚图、接线图、封装手册、中文资料、英文资料,ADAS1000-3真值表,ADAS
    发表于 03-10 18:38
    <b class='flag-5'>ADAS</b>1000-3 adi

    ADAS1000 adi

    电子发烧友网为你提供ADI(ADI)ADAS1000相关产品参数、数据手册,更有ADAS1000的引脚图、接线图、封装手册、中文资料、英文资料,ADAS1000真值表,ADAS1000
    发表于 03-10 18:37
    <b class='flag-5'>ADAS</b>1000 adi

    ADAS1000-2 adi

    电子发烧友网为你提供ADI(ADI)ADAS1000-2相关产品参数、数据手册,更有ADAS1000-2的引脚图、接线图、封装手册、中文资料、英文资料,ADAS1000-2真值表,ADAS
    发表于 03-10 18:37
    <b class='flag-5'>ADAS</b>1000-2 adi

    在OpenVINO™工具套件的深度学习工作台中无法导出INT8模型怎么解决?

    无法在 OpenVINO™ 工具套件的深度学习 (DL) 工作台中导出 INT8 模型
    发表于 03-06 07:54

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 818次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1340次阅读

    AI自动化生产:深度学习在质量控制中的应用

    随着科技的飞速发展,人工智能(AI)与深度学习技术正逐步渗透到各个行业,特别是在自动化生产中,其潜力与价值愈发凸显。深度学习软件不仅使人工和基于规则的算法难以胜任的大量生产任务得以自动
    的头像 发表于 01-17 16:35 1210次阅读
    AI自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b>在质量控制中的应用