0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用基于 AI 的优化技术让高速信号问题迎刃而解

深圳(耀创)电子科技有限公司 2024-04-20 08:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

系统设计领域充满变数,确保信号完好无损地到达目的地还只是冰山一角。随着封装密度不断提高、PCB 线路不断细化以及频率不断飙升,这些错综复杂的问题也在不断演变,需要综合运用电气机械、电磁和热动力学方面的专业知识。

为了应对日益增长的复杂性和细微差别,系统需要达到最佳性能。而要实现这一目标,设计人员在发挥聪明才智的同时,还要借助机器的计算能力。遗憾的是,不同学科犹如一个个孤岛彼此分离,阻碍了专家之间的有效合作。要满足这些激增的需求,系统级优化已不再是一种“奢侈选项”,而是“必不可少”。

手动工作流程包括构建、测试、原型验证、改进和最终制造,这给设计优化造成了很大的阻碍。目前的设计优化方法在很大程度上依赖于设计人员的直觉,他们通过创建原型和运行仿真来评估设计是否符合目标。然而,如今的电子设计开始追求更强的性能、更高的复杂性和更紧凑的外形,单凭人类的直觉已经难以应对优化挑战。我们需要先进的优化方法来实现日益复杂的现代设计。

基于 AI 的优化

Cadence 推出了 Optimality Intelligent System Explorer,这是一项全新的优化技术,利用 AI 帮助设计人员应对现代设计挑战。该技术具有多学科设计分析优化 (MDAO) 功能,可无缝执行从集成电路到封装,乃至电路板的系统级优化。将多物理场分析工具与 Optimality Explorer 集成,确保了预期结果万无一失。自动化大大加快了优化过程,工程师和设计师可以更轻松、更高效地实现目标。

Optimality Explorer 工作流程可指定输入参数,优化系统标准,并使用多物理场分析工具进行仿真。它能自动完成优化过程,生成优化设计和最终曲线。用户可以优化回波损耗、插入损耗、串扰隔离等参数以及眼图、抖动和比特误码率 (BER) 等系统标准。

为实现有效优化,设计人员必须考虑线宽、间距、线长、走线堆叠、焊盘尺寸、隔离焊盘几何形状、钻孔尺寸和过孔 stub 长度等几何变量。在创建模型时,还必须考虑制程 (Process)、电压 (Voltage) 和温度 (Temperature) 组合,片内端接 (on-die termination, ODT),抖动均衡等参数。

Optimality Explorer 旨在帮助设计人员进行无缝的设计优化,无需用户干预。其算法实现了优化过程的自动化,可提供流畅、便捷的用户体验。与传统方法相比,它能在不到 500 次的迭代中实现显著优化,加快设计收敛。Optimality Explorer 被称为 AI 驱动的设计同步多学科分析与优化工具。

Optimality Explorer 可高效、准确地仿真和优化复杂的 3D layout,处理传统上被认为具有挑战性的优化方案。该工具中包含用于 PC 封装互连的场求解器,可处理各种通常被视为具有挑战性的优化方案,如最大化交叉网格覆铜。

优化参数和注意事项

例如,在系统通信信道中,有发射器、接收器、PCB 互连、封装和中介层。这些器件经过抽象化,用作发射器-接收器的 IBIS-AMI 模型,发射器-接收器之间是走线和过孔。

a02d6cea-feaa-11ee-9118-92fbcf53809c.jpg

为确保最佳信道性能,必须考虑各种几何变量,如线宽、间距、线长、走线堆叠、焊盘尺寸、隔离焊盘几何形状、钻孔尺寸和过孔 stub 长度。创建模型时还应考虑 制程 (Process)、电压 (Voltage) 和温度 (Temperature) 组,片内端接 (on-die termination, ODT) 和抖动均衡等参数。

在优化过程中,必须指定需要优化的设计参数和想达到的优化目标。此外,还必须创建额外的代理模型 (surrogate model),以有效优化这些参数。

a031dc76-feaa-11ee-9118-92fbcf53809c.jpg

Optimality Explorer 基于随机搜索生成的初始数据集,构建并训练机器学习模型。它会不断分析仿真结果,更新设计变量,计算目标函数和约束条件,直到达到停止标准和收敛为止。

Optimality Explorer 旨在简化设计人员的优化过程,尤其是在需要考虑许多可调参数的情况下。其算法实现了优化过程的自动化,无需用户干预,并且易于使用。

a037b97a-feaa-11ee-9118-92fbcf53809c.jpg

传统方法需要 2500 次以上的迭代才能获得相当的结果,与之相比,Optimality Explorer 只需不到 500 次的迭代就能实现显著优化,可加快设计收敛。

利用 Optimality Explorer 提高效率

在复杂的电路 layout 中,仅使用单独的走线和过孔是不够的。需要将这些器件组合起来,创建互连设计,其中每个器件都会影响到其他器件的行为。

两个交叉网格覆铜平面之间的差分对

a042df8a-feaa-11ee-9118-92fbcf53809c.jpg

Optimality Explorer 可高效、准确地仿真和优化复杂的 3D layout,处理传统上难以优化的方案。该工具中包含用于 PC 封装互连的场求解器,可处理各种通常被视为具有挑战性的优化方案。例如,它可以最大限度地优化差分对设计中的交叉网格覆铜图案,从而获得更好的结果。Optimality Explorer 还能减少详尽扫描所需的仿真次数,更快地达到目标。

Optimality Explorer 可以优化布局前和布局后设计。例如,Optimality Explorer 对 RF 功率分配器进行优化,仅用 46 次仿真就达到了目标,而穷举法则需要 300 多万次仿真。Optimality Explorer 的多功能性还可扩展到处理具有许多参数的设计,例如,优化具有 16 个参数的微带贴片天线只需 71 次迭代。

展望未来:扩展 Optimality 平台

Optimality Explorer 工具背后的团队目前正在努力扩展该平台的适用范围,使之可以涵盖热学和流体动力学领域。这包括集成 Celsius 3D Solver 用于热分析,集成 CFD 工具用于流体动力学领域。此外,电气约束将被集成到 Allegro X Design Platform 现有的约束管理器中,为用户提供更全面的解决方案。开发团队将不断报告这些功能改进的最新进展。

推动电子系统的多物理场分析

解决现代系统中的高速信号优化问题是一项涉及多个维度的挑战。Optimality Explorer 突破了传统上极为消耗人力的优化流程的限制,以 AI 驱动技术取代了“设计-测试-改进”循环的传统交互流程,提供了一套更好的系统设计解决方案。Optimality Explorer 是电子设计领域的灯塔,指引设计人员自信穿梭于错综复杂的环境,在提供自动化技术的同时提高设计效率,为未来的综合设计解决方案铺平道路。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    90

    文章

    38224

    浏览量

    297070
  • 电子设计
    +关注

    关注

    42

    文章

    856

    浏览量

    49727
  • 高速信号
    +关注

    关注

    1

    文章

    263

    浏览量

    18462
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    华为发布AI容器技术Flex:ai,算力平均利用率提升30%

    电子发烧友网综合报道 2025年11月21日,在上海举办的“2025 AI容器应用落地与发展论坛”上,华为正式发布并开源了创新AI容器技术Flex:ai,为解决算力资源
    的头像 发表于 11-26 08:31 7204次阅读

    如何利用NPU与模型压缩技术优化边缘AI

    AI 模型体积庞大,部署在 NPU上常常面临困难,这凸显了模型压缩技术的重要性。要实现高效的实时边缘 AI,需要深入探讨NPU 与模型压缩技术(如量化与投影)如何协同工作。
    的头像 发表于 11-07 15:26 1056次阅读
    如何<b class='flag-5'>利用</b>NPU与模型压缩<b class='flag-5'>技术</b><b class='flag-5'>优化</b>边缘<b class='flag-5'>AI</b>

    优化boot4的乘法运算周期

    优化电路设计:在电路设计中,优化关键路径和信号传输路线,使用更高速的逻辑单元和存储器元件来降低延迟,从而缩短乘法器的运算周期。 利用流水线
    发表于 10-21 13:17

    AI赋能6G与卫星通信:开启智能天网新时代

    了30%,用户平均体验速度提高了25%。更重要的是,AI能够根据用户行为模式进行个性化优化,例如为经常使用视频会议的商务人士提供更高带宽,为游戏玩家提供更低延迟的网络服务。 增强信号处理:
    发表于 10-11 16:01

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    和量子计算的两项新兴的技术,将在生产假说方面发挥重要作用,从而改变科学发现的范式。 生成式AI: 2、穷举搜索 3、分析排错与组合优化 分析排错是生成假说的重要手段。强化学习也在优化
    发表于 09-17 11:45

    极细同轴线束如何解决AI设备的高速信号传输难题?

    极细同轴线束凭借精准阻抗、高屏蔽性、柔性和稳定性,成为AI设备高速信号传输的理想方案。它能有效解决信号失真、干扰与空间受限等难题,助力AI
    的头像 发表于 09-11 14:30 1197次阅读
    极细同轴线束如何解决<b class='flag-5'>AI</b>设备的<b class='flag-5'>高速</b><b class='flag-5'>信号</b>传输难题?

    如何利用数据+AI重塑业务流程

    在瞬息万变的商业世界里,企业一直在通过业务流程再造寻找提升竞争力的突破口。从ERP热潮,到数字技术的全面开花,每一次技术浪潮都推动着企业优化流程、提升效率。如今,站在AI和数据驱动的时
    的头像 发表于 09-04 14:37 749次阅读

    AI 芯片浪潮下,职场晋升新契机?

    、新架构不断涌现。能够在工作中提出创新性的解决方案,推动 AI 芯片性能、功耗、成本等关键指标的优化,将极大提升在职称评审中的竞争力。例如,在芯片设计中引入新的计算范式,如存算一体技术,有效解决传统冯・诺
    发表于 08-19 08:58

    【「DeepSeek 核心技术揭秘」阅读体验】第三章:探索 DeepSeek - V3 技术架构的奥秘

    时间减少,数据处理更流畅。这我联想到工业生产中的流水线,AI 训练在此处借鉴类似思路,通过优化任务分配和流程,突破硬件限制,追求更高效率,体现了技术发展中持续
    发表于 07-20 15:07

    首创开源架构,天玑AI开发套件端侧AI模型接入得心应手

    的端侧部署,Token产生速度提升了40%,端侧大模型拥有更高的计算效率和推理性能,使端侧AI交互响应更及时,用户体验更贴心。 联发科还与vivo和全民K歌携手,借助天玑AI人声萃取技术
    发表于 04-13 19:52

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    降低。这种趋势使得更多AI开发者能够利用FPGA进行硬件加速。 4.市场与产业的推动• 市场规模增长:随着5G、AI和物联网等新兴技术的快速发展,FPGA市场正在经历显著增长。预计到2
    发表于 03-03 11:21

    高速信号如何判定?常见的高速信号有哪些?

    随着信息技术的飞速发展,高速信号在互联网传输、计算机内部通信、移动通信及卫星通信等领域中广泛应用。那么,如何判定一个信号是否为高速
    的头像 发表于 02-11 15:14 1325次阅读
    <b class='flag-5'>高速</b><b class='flag-5'>信号</b>如何判定?常见的<b class='flag-5'>高速</b><b class='flag-5'>信号</b>有哪些?

    高速信号走线越短越好吗为什么

    高速数字电路设计中,信号走线的长度是一个至关重要的考量因素。随着数据传输速率的不断提升,信号完整性、时序准确性和系统可靠性等方面的挑战也随之增加。本文将深入探讨高速
    的头像 发表于 01-30 15:56 1417次阅读

    不是!高速先生给个过孔优化方案就那么难吗?

    高速先生成员--黄刚 又是崭新的一年哈,高速先生在总结去年一年的粉丝互动问题时,惊人的发现排在前列的问题就包括了差分过孔的优化方法能不能大概给出来。当然,大家都知道,像传输线的阻抗板厂可以来保证
    发表于 01-21 08:50

    扩频时钟技术分享:SSC技术是什么、SSC对测试高速总线信号的影响

    高速信号的速率时,我们会发现信号的比特率并不是稳定在一个数值而是在一个很小的范围内浮动;在一些总线的一致性测试中也有规范SSC测试的参数。 所以本篇文章就从 为什么要使用SSC技术、S
    的头像 发表于 01-06 11:38 7667次阅读
    扩频时钟<b class='flag-5'>技术</b>分享:SSC<b class='flag-5'>技术</b>是什么、SSC对测试<b class='flag-5'>高速</b>总线<b class='flag-5'>信号</b>的影响