0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

追踪高镍正极活性Li存量作为电池性能无损检测方式

清新电源 来源:清新电源 2024-04-18 09:07 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研究背景

锂电池的无损检测对实际应用意义重大,但通常容量和首效的测量容易受到副反应和自放电影响,缺乏对实际过程的理论支持,得到的结果往往不尽如人意。电极材料中的活性锂含量能够反应电池的真实运行状态,但一直缺少合适的探测方法。

成果简介

近日,美国爱达荷国家实验室Boryann Liaw和纽约州立大学宾汉姆顿分校M. Stanley Whittingham团队针对锂离子电池的无损检测提出了新的思路,通过追踪电极材料中的活性锂含量,反应电极-电解质界面附近的化学计量变化,利用锂含量利用率的细微差异降低电池风险、保证电池工程。该方法可应用于电池设计优化和制造管理,提高电池的性能和可靠性。

该文章以“Lithium inventory tracking as a non-destructive battery evaluation and monitoring method”为题发表在国际顶级期刊Nature Energy上,Meng Li为本文的第一作者。

研究亮点

(1) 与Li的容量(inventory)不同,Li的存量(capacity)能够了解电极-电解液界面的Li的化学计量比变化情况。研究结果验证了不同测试的区别,有助于理解和缓解电池封装和实验操作对测试结果产生的干扰。

(2) 可靠地跟踪电极中的锂存量,以显示电池配方和测试方法,如何影响性能。相反于容量,锂Li存量跟踪揭示了电极-电解质界面附近的化学计量变化。验证表明,澄清并减少来自电池配方和实验操作的干扰。基于从形成到结束的四个变量跟踪,用热力学框架表征了电极和电池的性能。

(3) 锂Li存量利用率的细微差异及精确合理化,保证了精确的电池工程、评估、故障分析和风险缓解。该方法可应用于从电池设计优化和制造到电池管理,提高电池性能和可靠性。

图文导读

图1反应了不同的高镍正极材料、电解液、装配方式、截止电压的电池测试,呈现出多种的衰减情况。当使用平衡电势Veq对活性锂含量x (LixNi0.8Mn0.1Co0.1O2)作图时,则能够呈现明确的规律。平衡电势Veq去除了极化电压的影响,与Li含量x的关系符合吉布斯自由能定律,可以通过恒流间歇滴定 (GITT) 判断。

4065897c-fd1b-11ee-a297-92fbcf53809c.png

图1 9个电池充放电曲线及正极锂含量追踪。使用不同形貌的正极材料、电解液、组装方式、活化形式等组装的电池,(a)循环中9个电池的电压-比容量曲线。(b)Veq与x曲线。

如图2的GITT曲线所示,当充放电释放相同的容量 (DQ) 时,充放电的电压变化并不相同,排除实验或系统误差,ΔQ和Li含量变化(Δx)并不是1:1对应关系,因此引入利用率 (utilization coefficient) U来修正:

41259820-fd1b-11ee-a297-92fbcf53809c.png

通过引入理论容量QTh和利用率U的概念,在图2c 中充放电曲线重合,具有较好的一致性。对利用率U的概念进一步延伸,其代表了界面Li活度与导线电势差之间Li浓度梯度的存在,Supplementary Fig. 2提到,利用系数U能够协调容量Q(分散在电极中)与正极|电解质界面附近监测到的锂含量变化(QTh × Δx)。电压和容量是对整个正极材料形貌、厚度、孔隙、接触性、浸润率的综合反映,不能准确反映实际界面情况。例如图2b中显示未完全放电,但图2c表明靠近隔膜的正极界面呈现完全放电状态。在锂电池的评估中应尽量避免过充和过放的情况,平衡电势和锂含量的变化对材料相变和电压滞后也提供一定的思路。

4130fbf2-fd1b-11ee-a297-92fbcf53809c.png

图2 不同性质(离子导电、电子导电和混合导电)中间层对锂剥离/沉积行为的影响。LNI-5% CNT中间层使得Li/LNI/Li电池实现了大于4.0 mA/cm2 / 4.0 mAh/cm2 的临界电流密度/容量(图3)。电池的过电势偏离欧姆定律表明锂从锂负极渗入多孔LNI-5% CNT中间层,增加了锂与中间层的接触面积。

在不同的截止电压下,经验性的容量法则很难判断正极材料的状态。如图3a所示,截止电压4.6V、4.2V的电荷保持率较好,4.4V次之。图3 (b-d) 显示了这些电池在循环老化实验中连续的电压-容量曲线,图3 (b-g) 转换为表现平衡电势 (Veq) 和锂含量 (x) 曲线。数据变换去除了极化相关的噪声信号,提供了正极化学计量学在循环老化过程中变化的清晰关系。平衡电势 (Veq) 和锂含量 (x) 曲线显示了截止电压4.6V以及随后的4.2V、4.4V中保留容量的能力,尽管暂时不清楚其基本原理,但与实际的循环保持率一致。

41440008-fd1b-11ee-a297-92fbcf53809c.png

图3 截止电压在4.2V、4.4V、4.6V的循环曲线。(a)电荷保持曲线。(b-d)不同截止电压的电池在循环老化中的实验V与Q曲线。(e-g)循环老化过程中相应Veq与x曲线。

图4 (a-c) 显示了循环老化过程中充电起始/放电末尾 (BOC/EOD) 和充电末尾/放电起始(EOC/BOD)随Q变化的移动情况。图4 (d-f)显示了随着循环老化NMC中相应的化学计量移动(通过Li含量追踪),显示了每个电池中的横向xch和xdis端点以及各自的Δx,显示了每个循环周期中正极-隔膜界面附近Li含量的变化。。图4 (g-i) 为老化过程中充放电段的利用系数U。图4 (j-1) 显示了比容量(QTh ´Δx)中Li含量的轨迹。4.6V的循环中, EOC和EOD保持一致,而BOD随着循环逐渐下降、BOC逐渐上升,与Uch和Udis的减少协同一致(图4i)。利用率U的减少可以被认为是Li含量保留率在循环中的延迟,可能由于Li扩散动力学和梯度累积引起,最终导致电压滞后。通过图4(b,k),可以追踪到锂含量主要分为三个阶段:(1) 锂库存主要存在于原始NMC的锂中(4.4C中 < 20个循环);(2) 锂库存从原始NMC中的锂过渡到锂负极的状态(4.4V循环21-33)和 (3)锂库存可能全部来自锂负极的状态(4.4V中>34个循环)。

4159d2d4-fd1b-11ee-a297-92fbcf53809c.png

图4 追踪截止电压在4.2V、4.4V、4.6V的电池在循环老化中关键变量的变化。每一列代表不同截止电压:(a-c),比容量与循环圈数变化; (d-f),锂含量 (x) 随循环数变化; (g-i),利用系数U随循环数的变化; (j-1) 理论容量和锂含量差值的乘积(QTh × Δx)随循环数的变化。

截止电压4.2V的电池在循环50圈后达到寿命终止(80%容量),(QTh × Δx)所示负极提供的Li在-250 mAh g-1至-400 mAh g-1范围内。活性锂的损失是循环寿命的决定因素,截止电压4.4V的电池在26圈即达到80%容量,即使Li含量余额仍处于第二阶段,但Uch(~0.85)和Udis(~0.76)明显下降。在截止电压4.6V中,Li含量余额始终维持在阶段1。

4179dd36-fd1b-11ee-a297-92fbcf53809c.png

图5 (QTh × Δx)随循环数的变化曲线。向下的曲线表明循环依赖于来自负极的过量锂来维持容量。

总结与展望

综上所述,锂含量作为电池性能和退化的关键指标,无损追踪活性锂含量的能力是监测和评估电池状态相当重要的手段。本文展示了一种可靠的电化学分析方法,利用NMC 811中平衡电极电位Veq与Li含量x之间的精确对应关系,将实验结果转化为基于Veq与x对应关系的热力学框架,进行详细的定量分析。该方法将阴极-电解质界面附近电极区域的化学计量学变化与电池测试或电源控制装置在电流接触处测量的电压相对应,得到容量和界面锂含量的变化有一定的对应关系的利用系数U,能够比较不同电池配方和测试条件下的电池。该方法有望改变电池工程和开发的范式,加速电池检测与评估技术的进步。

文献链接

Meng Li, Yulun Zhang, Hui Zhou, Fengxia Xin, M. Stanley Whittingham & Boryann Liaw, Lithium inventory tracking as a non-destructive battery evaluation and monitoring method. Nature Energy, 2024: 1-10.

DOI: 10.1038/s41560-024-01476-z

原文链接:https://doi.org/10.1038/s41560-024-01476-z

审核编辑:刘清
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    262

    文章

    8595

    浏览量

    182845
  • 电池管理
    +关注

    关注

    28

    文章

    584

    浏览量

    44820
  • 电池电压
    +关注

    关注

    0

    文章

    215

    浏览量

    12218
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21243
  • 电解液
    +关注

    关注

    10

    文章

    876

    浏览量

    23718

原文标题:美国爱达荷国家实验室Nature Energy:追踪高镍正极活性Li存量作为电池性能无损检测方式

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    SiLM2660CD-DG电池充放电边NMOS驱动器

    SiLM2660CD-DG一款专注于电池充电/放电系统控制的低功耗、边N沟道FET驱动器。SiLM2660CD-DG优特性是安全、可靠地控制连接在电池正极
    发表于 11-08 08:58

    【案例集锦】功率放大器在无损检测领域研究中的应用

    关于无损检测无损检测(NDT)作为现代工业质量管控与安全保障的核心技术,以“不损伤被测对象”为核心优势,贯穿于产品设计、生产制造、服役运维全
    的头像 发表于 11-06 18:47 4880次阅读
    【案例集锦】功率放大器在<b class='flag-5'>无损</b><b class='flag-5'>检测</b>领域研究中的应用

    深入解析Xray无损检测核心技术与应用优势

    在现代制造业和工业检测领域,质量控制和安全保障成为首要任务。许多企业面临产品缺陷难以发现、检测成本以及检测效率低的问题。随着技术的不断进步,Xray
    的头像 发表于 10-30 11:45 194次阅读

    电压放大器ATA-2021B:无损检测领域的核心利器

    无损检测(NDT)作为一种在不损害或不影响被检测对象使用性能的前提下,对材料或构件内部缺陷进行检测
    的头像 发表于 10-16 14:43 171次阅读
    <b class='flag-5'>高</b>电压放大器ATA-2021B:<b class='flag-5'>无损</b><b class='flag-5'>检测</b>领域的核心利器

    电池充放电容量检测:保障能源设备性能的关键环节

    在现代生活中,电池作为能量存储与释放的核心部件,广泛应用于手机、电动车、储能电站等领域。其充放电容量直接决定了设备的续航能力、使用寿命及安全性。因此,科学开展电池充放电容量检测,成为确
    的头像 发表于 09-24 14:44 446次阅读

    干法 vs 湿法工艺:全固态锂电池复合正极中粘结剂分布与电荷传输机制

    研究背景全固态锂电池因其高能量密度和安全性成为电动汽车电池的有力候选者。然而,聚合物粘结剂作为离子绝缘体,可能对复合正极中的电荷传输产生不利影响,从而影响
    的头像 发表于 08-11 14:54 1207次阅读
    干法 vs 湿法工艺:全固态锂<b class='flag-5'>电池</b>复合<b class='flag-5'>正极</b>中粘结剂分布与电荷传输机制

    锂离子电池电芯生产全工艺链 | 关键技术与参数解析

    、电芯后处理。电极制造MillennialLithium1.配料与混合:正极采用“三元材料(Li(NiMnCo)O₂,95%)+导电碳(1%)+PVDF黏结剂
    的头像 发表于 08-11 14:54 3201次阅读
    锂离子<b class='flag-5'>电池</b>电芯生产全工艺链 | 关键技术与参数解析

    锂离子电池正极材料之一:三元化的研究现状

    在新能源汽车蓬勃发展的当下,锂电池作为其核心动力源,其性能的优劣直接关系到车辆的续航里程、使用寿命等关键指标。而锂电池正极材料,更是决定
    的头像 发表于 08-05 17:52 1152次阅读
    锂离子<b class='flag-5'>电池</b><b class='flag-5'>正极</b>材料之一:三元<b class='flag-5'>高</b><b class='flag-5'>镍</b>化的研究现状

    探究P2/O3相堆叠结构对钠离子电池正极材料性能的影响

    的优化,通过调控P2/O3相堆叠结构,抑制O型堆叠的形成,实现P型堆叠主导的电化学过程,提升钠离子的扩散动力学,进而显著提高正极材料的速率性能与能量密度,为比能钠离子电池的开发提供新
    的头像 发表于 05-27 10:13 1587次阅读
    探究P2/O3相堆叠结构对钠离子<b class='flag-5'>电池</b><b class='flag-5'>正极</b>材料<b class='flag-5'>性能</b>的影响

    在线测宽仪无损检测 适配各种材质类型板材宽度检测

    板材类产品应用广泛,材质类型众多,有硬质板材、柔软材质、易形变材料、高温材质、辐射材质等,各种类型样式的板材均需要进行在线宽度检测,在线测宽仪以其多种测量原理、无损检测模式、多种配件组合等,使其在
    发表于 05-22 14:56

    基于光谱深度特征的油菜叶片锌含量检测

    为了实现油菜叶片锌含量的快速无损检测,该研究采用一种基于光谱成像技术结合深度迁移学习算法的高精度检测方法,通过无土栽培的方式,利用
    的头像 发表于 02-24 18:03 634次阅读
    基于<b class='flag-5'>高</b>光谱深度特征的油菜叶片锌含量<b class='flag-5'>检测</b>

    电池放电原理解析

    活性物质都参与反应,生成新的化合物,同时释放出电子。这些电子通过外部电路流动,形成电流,从而为外部设备提供电能。 具体过程:以铅酸蓄电池为例,放电时正极板上的二氧化铅(PbO2)和负极板上的海绵状铅
    发表于 02-10 16:11

    具有优越循环性的双重改性的低应变富正极软包全电池

    研究背景锂离子电池 (LIB) 阴极材料是高容量富层状氧化物 LiTMO2(其中 TM = Ni、Mn、Co)的深入研究主题,特别是在 LiNi0.8Co0.1Mn0.1O2 的背景下
    的头像 发表于 01-07 14:47 2699次阅读
    具有优越循环性的双重改性的低应变富<b class='flag-5'>镍</b><b class='flag-5'>正极</b>软包全<b class='flag-5'>电池</b>

    半互穿网络电解质用于电压锂金属电池

    研究背景 基于正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在电压充电时,
    的头像 发表于 12-23 09:38 1754次阅读
    半互穿网络电解质用于<b class='flag-5'>高</b>电压锂金属<b class='flag-5'>电池</b>

    微量多功能添加剂显著提升4.8V富正极和硅氧负极电池的超高压性能

     LiNi0.8Co0.1Mn0.1O2, NCM811) 与高容量硅基负极相结合,被认为是高能量密度锂离子电池 (LIBs) 的理想候选者之一。然而,在含量、电压和极端温度等苛
    的头像 发表于 12-23 09:26 2144次阅读
    微量多功能添加剂显著提升4.8V富<b class='flag-5'>镍</b><b class='flag-5'>正极</b>和硅氧负极<b class='flag-5'>电池</b>的超高压<b class='flag-5'>性能</b>