0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

像素大小和相机分辨率

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-03-20 06:29 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

像素大小像素是传感器的一部分,它收集光子,以便将它们转化为光电子。多个像素覆盖传感器表面,因此可以确定检测到的光子数量以及这些光子的位置。

像素有许多不同的尺寸,每种尺寸都有其优点和缺点。较大的像素由于表面积的增加而能够收集更多的光子。这允许更多的光子转化为光电子,从而提高传感器的灵敏度。但是,这是以分辨率为代价的。

较小的像素能够提供更高的空间分辨率,但每个像素捕获的光子更少。为了克服这个问题,可以对传感器进行背照,以最大限度地提高每个像素捕获和转换的光量。

像素的大小也决定了传感器的整体尺寸。例如,具有 1024 x 1024 像素的传感器,每个像素的 169 μm2表面积,传感器尺寸为 13.3 x 13.3 mm。然而,具有相同像素数的传感器,现在具有 42.25 μm2表面积,传感器尺寸为 6.7 x 6.7 mm。

相机分辨率

相机分辨率是成像设备分辨靠近的两个点的能力。分辨率越高,可以从对象中解析的细节就越小。它受像素大小、放大倍率、相机光学元件和奈奎斯特极限的影响。相机分辨率可以通过以下公式确定:

wKgaomX6EduAMRXyAAAUBF3q8Ls369.png

其中 2.3 补偿奈奎斯特极限。该限值由样本的瑞利准则确定。瑞利准则的定义是,是否可以将两个相邻的艾里圆盘(来自光源的衍射图案的中心亮点)彼此区分开来,从而确定可以分辨的最小点(如图1所示)。

wKgZomX6EdyARvw3AAOSquJdUFg629.png

图 1:左图:两个相邻的 Airy 圆盘,可以相互区分。右: 两个无法区分的 nieghboring Airy 圆盘,因为它们低于瑞利准则。

奈奎斯特极限决定了传感器是否可以区分两个相邻物体。如果两个物体之间的距离大于奈奎斯特极限,或超过该极限至少 2 倍,则传感器可以区分两个物体。奈奎斯特极限由您尝试成像的物体的空间频率(给定距离内的亮点数)决定。例如,如果您尝试测量相距 α nm 的几个亮点,则至少需要测量每个αnm 以捕获空间频率(即解析亮点)。这种空间频率允许将亮点之间的间隙捕获为黑色像素(即没有信号的像素)。如果亮点之间的距离小于像素的大小,则不会捕获黑色像素,因此无法解析亮点。这就是为什么像素越小,分辨率越高,如图 2 所示。

图 2:示意图显示,两个对象之间至少需要有一个像素宽度才能克服奈奎斯特极限,从而可以解析两个对象。这就是为什么较小的像素提供更高的分辨率,因为它们能够区分较小的物体。

镜头分辨率

在确定整体系统分辨率时,考虑相机镜头的分辨率也很重要。透镜分辨物体的能力受到衍射的限制。当物体发出的光通过透镜孔径时,它会发生衍射,在图像中形成衍射图案(如图3A所示)。这被称为 Airy 图案,并且有一个中心点被明亮的环包围,中间有较暗的区域(图 3B)。中心亮点称为艾里圆盘,其角半径由下式给出:

wKgZomX6EdyAP2DuAAAG2Nt-aF0170.png

其中 θ 是角分辨率(弧度),λ 是光的波长 (m),D 是透镜的直径 (m)。

被成像物体上的两个不同点会产生两种不同的 Airy 图案。如果两点之间的角间隔大于它们的艾里圆盘的角半径,则可以解析两个物体(瑞利准则)。但是,如果角度间隔较小,则对象上的两个不同点将合并。如图3C所示。

图 3:(A) 光源通过透镜孔径时产生的衍射图案的描述。(B) 由通过孔径的光衍射确定的艾里图案示例。(C) 顶部:两个相邻的 Airy 图案,由于 Airy 圆盘的分离,它们可以相互区分。中间:两个合并的 Airy 磁盘,防止它们被区分。底: 两个相邻的 Airy 模式完全合并。

艾里圆盘的角半径由透镜的孔径决定;因此,镜头光圈的直径也决定了分辨率。由于透镜孔径的直径与艾里圆盘的角半径成反比关系,因此孔径越大,角半径越小。这意味着更大的光圈会导致更高的镜头分辨率,因为较小细节之间的距离可以保持大于艾里圆盘的角半径。这通常就是为什么天文望远镜具有较大的透镜直径,以便能够解析恒星中更精细的细节。

总结

像素有各种尺寸,具体取决于应用程序所需的内容。大像素尺寸最适合不太关心高分辨率的低光成像条件。相比之下,较小的像素尺寸最适合明亮的成像条件,在这些条件下,分辨精细细节至关重要。

像素的大小也决定了传感器上的像素数,固定的传感器尺寸在表面上具有较多的像素,而像素表面积较小。

相机分辨率由像素大小、镜头光圈、放大倍率和奈奎斯特限制决定。克服奈奎斯特限制取决于像素大小,像素越小,细节越小。这是因为两个相邻物体之间的距离需要大于一个像素大小的距离,从而可以捕获一个黑色像素来区分两个物体之间的间隙。

镜头分辨率受衍射限制。当来自物体的光通过透镜孔径衍射时,就会形成通风图案。这些艾里图案具有明亮的中心点,称为艾里圆盘,其角半径由透镜孔径直径决定。如果两个相邻物体之间的角间隔大于艾里圆盘的角半径,则可以分辨两个相邻物体。由于这与光圈直径成反比,因此镜头光圈越大,分辨率越高。

在为研究应用选择合适的相机时,需要考虑像素尺寸和镜头光圈直径。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2574

    文章

    54429

    浏览量

    786300
  • 相机
    +关注

    关注

    5

    文章

    1539

    浏览量

    55422
  • 光子
    +关注

    关注

    0

    文章

    118

    浏览量

    15207
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    红外焦平面探测器的分辨率有哪些?高分辨率有哪些优势?

    分辨率是我们选购红外探测器时的一个关键参数,它代表了热成像像素点的数量。分辨率越高,像素点就越多,图像就越清晰,观测的距离也越远。红外热成像常见的
    的头像 发表于 12-10 16:12 232次阅读
    红外焦平面探测器的<b class='flag-5'>分辨率</b>有哪些?高<b class='flag-5'>分辨率</b>有哪些优势?

    镜头分辨率如何匹配工业相机分辨率

    能被分辨开来的两个物点之间的最小距离,就是镜头的物方分辨率。单位为µm。这只是单纯镜头本身的参数,只反映镜头的解析能力,而和工业相机多少像素无关!它直接反映了,一个理想物点经过镜头成像
    的头像 发表于 11-21 15:43 140次阅读
    镜头<b class='flag-5'>分辨率</b>如何匹配工业<b class='flag-5'>相机</b>的<b class='flag-5'>分辨率</b>

    相机分辨率:融合探测器与光学性能

    图1、该系统的调制传递函数为 MTFSYS = MTFOPTICS*MTFDETECTOR。由于探测器的调制传递函数起着主导作用,所以这是一个受探测器限制的系统(Fλ/d = 0.1) 相机分辨率
    的头像 发表于 11-11 07:58 145次阅读
    <b class='flag-5'>相机</b><b class='flag-5'>分辨率</b>:融合探测器与光学性能

    迅为RK3588开发板Android系统修改屏幕分辨率和density

    先来了解下屏幕相关的基本概念 修改屏幕分辨率和 density 有俩种方法。 方法一: 输入以下命令查看分辨率大小,如下图所示: wm size 输入以下命令修改屏幕分辨率,(x 小
    发表于 08-12 16:53

    时识科技推出百万像素工业级事件相机

    时识科技(SynSense)发布百万像素分辨率、高成像质量、高动态范围的工业级事件相机——Syn-Shining HD(闪灵系列工业相机)。
    的头像 发表于 07-31 11:29 886次阅读

    分辨率 vs 噪声 —— ADC的挑战

    设计者常用高分辨率 ADC 以降低最低可量测单位(LSB),提高检测精度。 比如一个 16 位 ADC 在 5V 范围内, LSB ≈ 76 μV ;理想情况下可以检测到微弱电信号。 问题是: 若
    的头像 发表于 06-23 07:38 1492次阅读
    <b class='flag-5'>分辨率</b> vs 噪声 —— ADC的挑战

    如何计算存储示波器的垂直分辨率

    存储示波器的垂直分辨率是指示波器能够分辨的最小电压变化量,它反映了示波器对信号幅度细节的测量能力,通常用位数(bit)来表示,也可通过相关公式换算为具体的电压值。以下为你详细介绍其计算方法:了解关键
    发表于 05-30 14:03

    CX3上的AR0245传感器的探头控制分辨率错误怎么解决?

    你好。我正在开发一款使用 AR0234CS 传感器和 CX3( CYUSB3065-BZXI )芯片的相机,并努力获得正确的视频流分辨率。 该传感器能够以 120 fps 提供 1920 x
    发表于 05-12 07:02

    media player 调用屏幕大小会随分辨率大小自动调整无法固定

    在labview中调用media player控件播放视频,前面板的大小会根据分辨率大小自动调节调用media player面板的大小,无法固定
    发表于 03-30 13:41

    高光谱相机的空间分辨率,光谱范围等参数我们要如何理解

    应。 一、空间分辨率:看清细节的能力 空间分辨率指的是高光谱相机能够分辨的最小物体尺寸,通常以像素大小
    的头像 发表于 03-14 10:35 1144次阅读

    高速、高分辨率、大面积成像应用的理想选择——Falcon4-CLHS工业相机

    在机器视觉高性能成像应用领域,TeledyneDalsa的Falcon4-CLHS工业相机系列无疑是理想之选。它运用了TeledyneImaging的先进CMOS架构,为大面积、高分辨率、高速
    的头像 发表于 02-21 17:05 1256次阅读
    高速、高<b class='flag-5'>分辨率</b>、大面积成像应用的理想选择——Falcon4-CLHS工业<b class='flag-5'>相机</b>

    为什么由相机和投影仪构建三维测量系统时,相机分辨率要是DMD分辨率的4倍? DLPDLCR3310最近工作距离是多少?

    工程师您好,有以下问题希望得到您的回复: 为什么由相机和投影仪构建三维测量系统时,相机分辨率要是DMD分辨率的4倍? DLPDLCR3310的最近工作距离是多少?在实际投影时,在2
    发表于 02-18 08:33

    迅为RK3588开发板Android 系统修改屏幕分辨率和 density

    我们先来了解下屏幕相关的基本概念 修改屏幕分辨率和 density 有俩种方法。 方法一: 输入以下命令查看分辨率大小,如下图所示: wm size 输入以下命令修改屏幕分辨率
    发表于 12-27 11:07

    如何提高透镜成像的分辨率

    透镜成像分辨率是指透镜系统能够分辨的最小细节的能力。提高透镜成像分辨率对于许多应用领域,如显微镜、望远镜、相机等,都是至关重要的。以下是一些提高透镜成像
    的头像 发表于 12-25 16:54 1736次阅读

    请问TVP5158分辨率D1与HalfD1是如何转换的?

    这段时间在调试TVP5158模拟视频采集芯片,发现输出数据有三种分辨率D1、HalfD1和CIF,手册上面只是说明了D1、HalfD1和CIF三者的水平像素点和垂直行数的关系,但是这三种分辨率
    发表于 12-23 06:31