0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

有望加速甚至改变噬菌体的芯片纳米“光镊”

led13535084363 来源:光行天下 2024-03-04 14:07 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《Small》杂志。

5477700c-d8b2-11ee-a297-92fbcf53809c.jpg

嵌入芯片的纳米“光镊”捕获噬菌体(示意图) 抗生素耐药性对人类健康的威胁与日俱增,科学家正在不断寻找治疗耐药菌感染的新方法,噬菌体成为“救星”之一。噬菌体是一种捕食细菌的病毒。但利用噬菌体对抗细菌感染的相关疗法面临一大挑战,即为特定感染找到合适的噬菌体就像大海捞针。

目前的方法不仅涉及繁琐的培养程序,而且分析也极其耗费时间。 瑞士洛桑联邦理工学院、法国格勒诺布尔核能研究中心和洛桑大学医院的科学家,开发出一种芯片上的纳米“光镊”,其能用最小的光功率捕获和操纵单个细菌及病毒粒子,并实时获取被捕获微生物的信息。

这种纳米“光镊”利用高度聚焦的激光束,捕获和操纵病毒粒子等微观物体。光会产生梯度力,将粒子吸引到高强度的焦点,有效地将其固定在适当位置,而无需物理接触。

1986年,物理学家亚瑟·阿什金首次发明了“光镊”,并因此获得2018年诺贝尔物理学奖。

研究团队指出,最新方法的不同之处在于,纳米“光镊”能读取每个粒子在光中的独特变化,以此区分不同类型的噬菌体,而无需使用任何化学标签或表面生物受体。这种方法可显著加快治疗性噬菌体的选择,从而更快实现基于噬菌体的治疗。

最新研究还具有超越噬菌体疗法的意义。能够实时操纵和研究单个病毒粒子,为科学家提供了快速测试和实验的强大工具,有助于更深入了解病毒与宿主的相互作用,更好地应对细菌感染。


审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米技术
    +关注

    关注

    2

    文章

    202

    浏览量

    26960

原文标题:一种芯片上的纳米“光镊”

文章出处:【微信号:光行天下,微信公众号:光行天下】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    模块和传统模块的差异

    在数据中心速率向800G甚至1.6T迈进的时代,一种名为“硅”的技术正以前所未有的势头改变模块的产业格局。那么,硅模块和我们熟悉的传
    的头像 发表于 11-21 18:17 246次阅读
    硅<b class='flag-5'>光</b>模块和传统<b class='flag-5'>光</b>模块的差异

    Chiplet,改变芯片

    两年翻一番。长期以来,技术发展一直遵循着这一定律。但情况已经开始发生变化。近年来,芯片电路尺寸的缩小变得越来越困难,线宽如今已降至几纳米(nm)。工程师们
    的头像 发表于 10-17 08:33 2945次阅读
    Chiplet,<b class='flag-5'>改变</b>了<b class='flag-5'>芯片</b>

    Aigtek电压放大器精密驱动芯片级腔力传感器谐振腔的高效耦合

    ‐On‐Insulator,SOI)技术刻蚀制作的芯片级腔加速度计作为实验的机械系统。通过调节光纤耦合状态改变腔内
    的头像 发表于 09-11 11:03 441次阅读
    Aigtek电压放大器精密驱动<b class='flag-5'>芯片</b>级腔<b class='flag-5'>光</b>力传感器谐振腔的高效耦合

    电压放大器在芯片级腔力传感器谐振腔耦合实验中的关键应用

    ‐On‐Insulator,SOI)技术刻蚀制作的芯片级腔加速度计作为实验的机械系统。通过调节光纤耦合状态改变腔内
    的头像 发表于 09-09 11:23 797次阅读
    电压放大器在<b class='flag-5'>芯片</b>级腔<b class='flag-5'>光</b>力传感器谐振腔耦合实验中的关键应用

    超声波指纹模组灵敏度飞升!低温纳米烧结银浆立大功

    纳米级特性,展现出了卓越的性能优势,成为了指纹模组材料领域的一颗新星,有望引领指纹模组进入一个全新的发展阶段 。 探秘低温纳米烧结银浆 微观世界里的神奇银浆 低温纳米烧结银浆,从微观
    发表于 05-22 10:26

    空间调制器(SLM)在大规模可编程量子模拟器中的应用

    空间调制器(Spatial Light Modulator, SLM)凭借其动态调控场相位、振幅和偏振的能力,逐渐成为量子模拟器中的核心元件,为阵列、冷原子操控以及光子量子态调
    的头像 发表于 04-09 16:31 1347次阅读
    空间<b class='flag-5'>光</b>调制器(SLM)在大规模可编程量子模拟器中的应用

    全球芯片产业进入2纳米竞争阶段:台积电率先实现量产!

    随着科技的不断进步,全球芯片产业正在进入一个全新的竞争阶段,2纳米制程技术的研发和量产成为了各大芯片制造商的主要目标。近期,台积电、三星、英特尔以及日本的Rapidus等公司纷纷加快了在2纳米
    的头像 发表于 03-25 11:25 1196次阅读
    全球<b class='flag-5'>芯片</b>产业进入2<b class='flag-5'>纳米</b>竞争阶段:台积电率先实现量产!

    Marvell展示2纳米芯片3D堆叠技术,应对设计复杂性挑战!

    随着现代科技的迅猛发展,芯片设计面临着前所未有的挑战。特别是在集成电路(IC)领域,随着设计复杂性的增加,传统的罩尺寸已经成为制约芯片性能和功能扩展的瓶颈。为了解决这一问题,3D堆叠技术应运而生
    的头像 发表于 03-07 11:11 923次阅读
    Marvell展示2<b class='flag-5'>纳米</b><b class='flag-5'>芯片</b>3D堆叠技术,应对设计复杂性挑战!

    纳米技术的发展历程和制造方法

    10纳米甚至更小。这种技术进步使得每个芯片可以容纳更多的器件,从而实现更强大的运算能力、更高的存储容量以及更快的运行速度。
    的头像 发表于 03-04 09:43 4082次阅读
    <b class='flag-5'>纳米</b>技术的发展历程和制造方法

    请问DMD芯片在on状态时,以何种角度入射DMD芯片,出射可以垂直于芯片

    请问DMD芯片在on状态时,以何种角度入射DMD芯片,出射可以垂直于芯片
    发表于 02-27 07:20

    纳米铜烧结为何完胜纳米银烧结?

    纳米铜烧结技术逐渐展现出其独特的优势,甚至在某些方面被认为完胜纳米银烧结。本文将深入探讨纳米铜烧结技术为何能够在这一领域脱颖而出。
    的头像 发表于 02-24 11:17 1641次阅读
    <b class='flag-5'>纳米</b>铜烧结为何完胜<b class='flag-5'>纳米</b>银烧结?

    Jcmsuite应用:场遇到纳米球的散射与吸收

    这个教程的例子模拟散射到衬底上的球面粒子。粒子被S偏振和p偏振的斜射平面波照射。JCMsuite计算近场解。后处理用于计算吸收和衍射截面,并导出场轮廓。 近场强度(伪色,对数尺度)在两个截面
    发表于 01-22 08:57

    Rapidus携手博通推进2纳米芯片量产

    近日,据日媒报道,日本半导体新兴企业Rapidus正与全球知名芯片制造商博通(Broadcom)展开合作,共同致力于2纳米尖端芯片的量产。Rapidus计划在今年6月向博通提供试产芯片
    的头像 发表于 01-10 15:22 1006次阅读

    OptiFDTD应用:用于光纤入波导耦合的硅纳米锥仿真

    介绍 在高约束芯片上与亚微米波导上耦合的两种主要方法是光栅或锥形耦合器。[1] 耦合器由高折射率比材料组成,是基于具有纳米尺寸尖端的短锥形。[2] 锥形耦合器实际上是光纤和亚微米波导之间的紧凑模式
    发表于 01-08 08:51

    7纳米工艺面临的各种挑战与解决方案

    本文介绍了7纳米工艺面临的各种挑战与解决方案。 一、什么是7纳米工艺? 在谈论7纳米工艺之前,我们先了解一下“纳米”是什么意思。纳米(nm)
    的头像 发表于 12-17 11:32 2430次阅读