0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅的挑战与机遇

深圳市浮思特科技有限公司 2023-12-14 16:58 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在功率半导体市场上,碳化硅(SiC)正逐步获得重视,特别是在电动汽车领域,它越来越受欢迎,但由于成本过高,许多应用场景仍然乏力涉足。

我们对碳化硅的优点已经十分熟悉,但直到最近,由于它仍是一种较为特定的技术,没有受到足够的投资。随着对能适应高电压应用的芯片需求的逐渐增长,碳化硅得到了更多深入的关注。与其他可能的硅功率器件替代品相比,碳化硅享有熟悉性的优势。

碳化硅是最早被商业化的半导体之一,最早被应用于晶体收音机的检测二极管。自2008年以来,商业碳化硅结型场效应晶体管(JFETs)已经上市并在电子设备中得到广泛应用,特别是在极端环境下。2011年,碳化硅金属氧化物半导体场效应晶体管(MOSFETs)也开始商业化。这种材料提供了中等的带隙,其击穿电压是硅的10倍。

然而,碳化硅颇难制造。日立能源全球产品管理副总裁Tobias Keller解释,标准的Czochralski (CZ)生长方法是不可行的。CZ生长法在1500°C左右将硅融化在硅耳坩埚内,但碳化硅的熔点超过2700°C。

一般来说,碳化硅晶体通过Lely方法生长。在氩气环境中,将碳化硅粉末加热到2500°C以上,在种晶上进行升华。这种方法生产的结果是可行的,但是层叠错位和其他缺陷导致它缺陷重重且难以控制。工程师在检查来料的碳化硅的晶圆时,显而易见,由于堆叠错位和其他缺陷,找出很多“死区”。碳化硅器件是在定制的外延器件层上进行优化以适应预期的工作电压的。较厚的表皮层可以承受更高的电压,但也会有更多的缺陷。

碳化硅MOSFETs还受到氧化物/碳化物表面通常质量较差的限制。来自日本京都和大阪大学的研究员T. Kimoto及其同事在去年12月份的IEEE电子器件会议(IEDM)上提出,表面产生碳-碳缺陷是由于碳化硅的直接氧化造成的。这些缺陷位置靠近碳化硅的导带边缘,它们增加了导通通道电阻,导致设备中阈值电压的漂移。

作为避免碳化硅氧化的方法,Kimoto的团队首先用氢等离子体蚀刻了表面,然后通过化学气相沉积法(CVD)沉积二氧化硅,并对接面进行氮化。这个过程降低了缺陷密度,并将电子迁移率提高了一倍以上,在10V的栅偏压下达到80 cm2/V-sec。

日立能源(前ABB半导体)的Stephan Wirths和他的同事演示了一个未命名的高介电常数化合物,它能与碳化硅形成低缺陷表面, 不需要SiO2必需的钝化步骤。正如在硅器件中一样,对碳化硅金属氧化物半导体场效应管使用高介电常数介质也会增加在给定电容下的物理厚度,从而减少漏电流。


图片

碳化硅的载流子迁移率较低,这给设备设计师带来了一个新的挑战。即使经过几十年的优化,通过改进介质的载流子迁移率表现最好的碳化硅产品迁移率仍然比硅少10倍。因此,相关通道电阻较硅高出10倍。

对于功率器件,低迁移率限制了其性能和耐久性。器件的电阻和开关损失直接影响电动汽车的续航等参数。尽管植入型掺杂剂和器件结构的改进可以降低通道电阻,但如Sonrisa Research的总裁James Cooper所指出,这同时也导致了电流密度增加并降低短路耐受时间。

短路耐受时间是衡量功率器件安全性的重要参数。如果设备因故发生短路,那么它需要拥有足够的寿命以保证保护电路反应。失败可能会对电负载产生永久性损坏,甚至可能导致用户受伤、火灾和财产损失。对于具体要求,依赖于保护电路的设计,但通常时间在5到10微秒之间。随着电流密度的增加,短路状态下的温度也会随之升高,而耐久时间则会减少。

相比于同等评级的硅器件,碳化硅MOSFET的市场接受度较低,这部分原因是这些设备往往具有较短的耐受时间。因此,设计者们期望改变通道电阻和电流密度之间的关系。我们是否有办法降低电阻,而不将电流密度提高到危险的水平呢?


图片

可能的解决方案是降低电极偏压并减小氧化物厚度。Cooper解释道,薄氧化物提高了对通道的控制——要知道在硅MOSFET中就运行在低电压下。这种解决方案需要对制造过程进行微调。虽然关于薄介质碳化硅器件的研究较少,但硅器件使用的氧化物厚度薄达到5nm,且没有引发过多的隧道效应。如上所述,使用高介电常数适宜可以在保持物理厚度的同时提供更好的通道控制。

SUNY理工学院的Dongyoung Kim和Woongje Sung提出了另一种解决方案,他们尝试通过增加有效通道宽度来降低电流密度。他们沿 SiC晶格方向使用离子引导,以4°的倾斜角植入深P井。这种方法只需要微小的改动即可应用于制造过程中,因为深井掺杂和常规井使用的掩蔽材料相同。最终所得的器件可以减小最大漏电流约2.7倍,同时将耐受时间提高了4倍。

针对类似的问题,硅工业则转向了如今无所不在的FinFET。通过在特定电流下增加通道面积,可以降低电流密度。普渡大学的研究人员展示了一个具有多个亚微米fin的碳化硅三栅金属氧化物半导体场效应管,并实现了对特定通道电阻的3.6倍降低。

虽然目前还不清楚功率设备行业会以多快的速度采纳像FinFET这样的颠覆性架构,但碳化硅的高击穿电压无疑是一大吸引力。希望实现这一优势的制造商需要找到解决低迁移率和高电流密度问题的办法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12552

    浏览量

    236255
  • 功率半导体
    +关注

    关注

    23

    文章

    1409

    浏览量

    45056
  • 碳化硅
    +关注

    关注

    25

    文章

    3324

    浏览量

    51732
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    探索碳化硅如何改变能源系统

    作者:Michael Williams, Shawn Luke 碳化硅 (SiC) 已成为各行各业提高效率和推动脱碳的基石。碳化硅是高级电力系统的推动剂,可满足全球对可再生能源、电动汽车 (EV
    的头像 发表于 10-02 17:25 1422次阅读

    [新启航]碳化硅 TTV 厚度测量技术的未来发展趋势与创新方向

    。随着碳化硅产业向大尺寸、高性能方向发展,现有测量技术面临诸多挑战,探究未来发展趋势与创新方向迫在眉睫。 二、提升测量精度与分辨率 未来,碳化硅 TTV 厚度测量技术
    的头像 发表于 09-22 09:53 1482次阅读
    [新启航]<b class='flag-5'>碳化硅</b> TTV 厚度测量技术的未来发展趋势与创新方向

    碳化硅器件的应用优势

    碳化硅是第三代半导体典型材料,相比之前的硅材料,碳化硅有着高击穿场强和高热导率的优势,在高压、高频、大功率的场景下更适用。碳化硅的晶体结构稳定,哪怕是在超过300℃的高温环境下,打破了传统材料下器件的参数瓶颈,直接促进了新能源等
    的头像 发表于 08-27 16:17 1118次阅读
    <b class='flag-5'>碳化硅</b>器件的应用优势

    碳化硅晶圆特性及切割要点

    01衬底碳化硅衬底是第三代半导体材料中氮化镓、碳化硅应用的基石。碳化硅衬底以碳化硅粉末为主要原材料,经过晶体生长、晶锭加工、切割、研磨、抛光、清洗等制造过程后形成的单片材料。按照电学性
    的头像 发表于 07-15 15:00 868次阅读
    <b class='flag-5'>碳化硅</b>晶圆特性及切割要点

    碳化硅何以英飞凌?—— SiC MOSFET性能评价的真相

    的真相(误区一见:碳化硅何以英飞凌?——沟槽栅技术可靠性真相),并介绍英飞凌如何通过技术创新应对这些挑战。常见误区2:“SiC的性能主要看单位面积导通电阻Rsp,电阻
    的头像 发表于 04-30 18:21 661次阅读
    <b class='flag-5'>碳化硅</b>何以英飞凌?—— SiC MOSFET性能评价的真相

    碳化硅功率器件有哪些特点

    随着全球对绿色能源和高效能电子设备的需求不断增加,宽禁带半导体材料逐渐进入了人们的视野。其中,碳化硅(SiC)因其出色的性能而受到广泛关注。碳化硅功率器件在电力电子、可再生能源以及电动汽车等领域的应用不断拓展,成为现代电子技术的重要组成部分。本文将详细探讨
    的头像 发表于 04-21 17:55 1010次阅读

    SiC碳化硅二极管公司成为国产碳化硅功率器件行业出清的首批对象

    结合国产碳化硅功率半导体市场的竞争格局和技术发展趋势,SiC碳化硅二极管公司已经成为国产碳化硅功率器件行业出清的首批对象,比如2024已经有超过两家SiC碳化硅二极管公司破产清算,仅有
    的头像 发表于 02-28 10:34 686次阅读

    碳化硅薄膜沉积技术介绍

    多晶碳化硅和非晶碳化硅在薄膜沉积方面各具特色。多晶碳化硅以其广泛的衬底适应性、制造优势和多样的沉积技术而著称;而非晶碳化硅则以其极低的沉积温度、良好的化学与机械性能以及广泛的应用前景而
    的头像 发表于 02-05 13:49 1807次阅读
    <b class='flag-5'>碳化硅</b>薄膜沉积技术介绍

    碳化硅的耐高温性能

    在现代工业中,高性能材料的需求日益增长,特别是在高温环境下。碳化硅作为一种先进的陶瓷材料,因其卓越的耐高温性能而受到广泛关注。 1. 碳化硅的基本特性 碳化硅是一种共价键合的陶瓷材料,具有高硬度
    的头像 发表于 01-24 09:15 2829次阅读

    碳化硅在半导体中的作用

    碳化硅(SiC)在半导体中扮演着至关重要的角色,其独特的物理和化学特性使其成为制作高性能半导体器件的理想材料。以下是碳化硅在半导体中的主要作用及优势: 一、碳化硅的物理特性 碳化硅具有
    的头像 发表于 01-23 17:09 2465次阅读

    产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用

    *附件:国产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用.pdf
    发表于 01-20 14:19

    安森美碳化硅应用于栅极的5个步骤

    在之前的两篇推文中粉末纯度、SiC晶锭一致性……SiC制造都有哪些挑战?5步法应对碳化硅特定挑战,mark~,我们介绍了宽禁带半导体基础知识、碳化硅制造
    的头像 发表于 01-09 10:31 869次阅读

    安森美在碳化硅半导体生产中的优势

    此前的文章“粉末纯度、SiC晶锭一致性……SiC制造都有哪些挑战”中,我们讨论了宽禁带半导体基础知识及碳化硅制造挑战,本文为白皮书第二部分,将重点介绍碳化硅生态系统的不断演进及安森美(
    的头像 发表于 01-07 10:18 850次阅读

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性能和使用寿命
    发表于 01-04 12:37

    碳化硅衬底修边处理后,碳化硅衬底TTV变化管控

    一、碳化硅衬底修边处理的作用与挑战 修边处理是碳化硅衬底加工中的一个关键步骤,主要用于去除衬底边缘的毛刺、裂纹和不规则部分,以提高衬底的尺寸精度和边缘质量。然而,修边过程中由于机械应力、热应力以及
    的头像 发表于 12-23 16:56 487次阅读
    <b class='flag-5'>碳化硅</b>衬底修边处理后,<b class='flag-5'>碳化硅</b>衬底TTV变化管控