0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

元宇宙要火,但可不能“起火”哦!--了解一下村田半固态凝胶软包电池

jf_pJlTbmA9 来源:Murata村田中国 作者:Murata村田中国 2023-12-06 16:43 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

大家还记得

微软重金收购动视暴雪的新闻吧

687亿美元

“全现金”收购

让我们再次感受到了微软的“壕”气

巨额收购的背后,是微软全力进军元宇宙生态的强烈愿景,并且将本就在风口浪尖上的“元宇宙”推向了更高的境界。

元宇宙的“入口”——VR眼镜

在先进的显示/音频/动态感知技术的加持下,玩家们使用VR产品时可以更加地沉浸于“元宇宙”世界中,获得更美妙的游玩体验。

但是这也带来了一些问题:

当玩家的视觉/听觉等知觉都沉浸于虚拟世界时,毫无疑问会大幅降低对周遭环境变化的感知和反应能力。因此在使用包括VR眼镜等虚拟现实设备时,需要确保使用过程中的安全性,其中最基础的是【设备本身需要提高其安全性】。特别是VR设备作为头戴设备,一旦VR设备出现危害人体安全的事故,会直接威胁到人体的重要器官如眼睛和耳朵,甚至有可能影响到脑部。

在各家VR产品厂家的设计方案中,大多数VR眼镜多是内置锂电池的无线设备。而锂电池恰恰是VR设备自身安全性的最大短板。

锂电池是VR设备自身安全性的最大短板

为什么锂电池会自燃起火?

我们在中学阶段的化学课上有学过“燃烧三要素的概念”:

wKgZomVdkiWAbQLqAABeKUIcnRs131.jpg

当“助燃剂”,“高温”和“可燃物”这三者齐聚一堂时,“可燃物”就会发生燃烧的现象。

接下来我们来看看锂电池是如何“自带”这三种要素的:

1. 可燃物
除去电池的外壳(钢壳或者铝塑膜),电池内部主要有正极材料(涂敷在铝箔上),负极材料(涂敷在铜箔上),隔膜和电解液组成。隔膜夹在正极和负极之间组成三明治结构,再将“三明治”或卷绕或叠层出我们熟悉的圆柱或者方型电池的形状,最后再将电解液注入其中,即完成了电池的基本组装。

wKgaomVdkieAS1A3AAF92lIb__k526.jpg

而其中,电解液的主体部分是有机溶剂,是可燃物质,常用的溶剂有碳酸乙烯酯(EC)、碳酸丙烯脂(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)等。这些物质的燃点普遍较低,碳酸二甲酯(DMC)大约在180度,而碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)的燃点只有100度左右。

2. 高温
锂电池的工作过程可以简单理解为锂离子在正极和负极材料之间的“反复横跳”。

放电的时候,锂离子从负极材料中脱嵌,通过隔膜的微孔,嵌入正极材料中。充电的时候则相反,锂离子从正极材料中脱嵌后再嵌入负极材料。

wKgaomVdkiqAFUJPAAEc5_s7BlA953.jpg

但是正负极材料吸收锂离子的能力是有极限的,过大的量或者过快的速度等,当超过材料的极限吸纳能力后(或者低温等弱化了材料的吸纳能力),锂离子就会在材料表面大量堆积且自我结晶化,长出如树枝一般的锂枝晶。而这种锂枝晶不断生长后会刺穿隔膜,最终接触到另一端电极从而造成内短路释放大量热量,产生高温。

wKgZomVdkiuAOBB9AAErFXFVkxU893.jpg

3. 助燃剂(氧气)

目前主流的锂电池正极材料里,绝大多数都是金属氧化物材料,例如三元镍钴锰LiNixCoyMn1-x-yO2或钴酸锂LiCoO2。其优点是可以吸纳更多锂离子,释放更多电能,但缺点是不耐高温。高温下这些正极材料会分解,氧原子会从原先的化学结构后脱出,之后在电池密闭的空间内结合生成氧气,即析氧。

所以你看,锂电池几乎是自带燃烧三要素。

wKgaomVdki-ATV3EAAElGcCIv5s103.jpg

首先是电池过度使用或者材料衰减后,材料表面开始形成锂枝晶。锂枝晶生长到刺穿隔膜后导致正负极内短路,产生高温。高温下正极材料开始析出氧气。这样“短路造成的高温”+“正极产生的氧气”+“低燃点的电解液有机溶剂”=锂电池自燃。

我们再从自燃的结果去倒推自燃发生的原因:

1. 自燃的发生需要集齐燃烧三要素。

2. 三要素中,氧气也是由高温引发的。

3. 高温的主要来源是电池内短路。

4. 内短路的主要来源是锂枝晶。

所以,如果我们可以有效地抑制锂枝晶的话,就可以从根源上避免锂电池自燃。

找到锂电池的安全病根,对症下药!
——村田电池的半固体凝胶电解质技术

锂枝晶之所以可以生长并刺穿隔膜,主要问题还是在于电解液是“液体“,锂枝晶可以在”柔软“的液体环境中自由生长。

那么如果不用液体呢?村田电池的工程师们从这个视角,开发出了基于半固体凝胶电解质的凝胶锂电池。

wKgaomVdkjCAahn7AAHB3I6miTA311.jpg

半固体的凝胶电解质为锂电池带了多项好处:

1. 锂离子在半固体凝胶电解质环境中,很难有效地形成树杈状锂枝晶。

wKgZomVdkjGAPJJuAAFLSRHwBI0438.jpg

2. 村田电池的半固体凝胶电解质本身具有较强的缓震能力,可以吸收电池在使用过程中受到的震动。并且半固体也赋予了凝胶电解质较强的机械强度,当电池受到外力冲击时,可以有效保护电池内部的电极/隔膜的三明治结构,提高电池的耐用性和抗冲击能力。例如常见的手机跌落问题,村田凝胶软包电池可以承受上百次的手机跌落测试,是传统液系软包的数倍。(仅供参考)

wKgaomVdkjOACjRBAADxgHVZgDo336.jpg

3. 锂电池的电解液漏液问题是个老大难问题了。而村田电池的半固态凝胶电解质的半固态特质使得这个电解液问题也解决了。

wKgZomVdkjSAAR6oAAFQIMuCT38719.jpg

4. 村田电池的半固态凝胶电解质的燃点也比传统液系电解液要高,当电池被外部的尖锐物刺穿而引发短路高温时,高燃点的半固态电解质也较难被引燃,有效降低了起火风险。

wKgZomVdkjWACBJIAAHZEDPGNF0764.jpg

目前村田凝胶软包电池已经应用在主流品牌的游戏外设及VR设备中,让广大玩家可以更安心更放心地畅游于游戏世界和元宇宙中。村田电池也会继续为社会提供更高效更安全的电池解决方案。

wKgaomVdkjeAUJ9FAAFjTi-qZvA792.jpg

村田电池产品阵容及应用

村田电池还有其他多种高品质高性能的产品可供客户选择,如果您也对村田电池感兴趣,您可以联系我们,或者联系您所在区域的村田销售,欢迎前来咨询洽谈~!

文章来源: Murata村田中国

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    262

    文章

    8594

    浏览量

    182812
  • vr
    vr
    +关注

    关注

    34

    文章

    9692

    浏览量

    156616
  • 电池
    +关注

    关注

    85

    文章

    11370

    浏览量

    141336
  • 元宇宙
    +关注

    关注

    13

    文章

    1410

    浏览量

    12492
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    固态电池测试套件

    键成型、稳压强测,固态电池研发高效解决方案!固态电池稳压测试套件包含专用模具、压合设备与压力保持套件,实现
    发表于 07-25 17:15

    贴片电容的阻抗匹配问题如何解决?

    贴片电容在阻抗匹配问题上的解决方案需结合其高频特性优化与具体应用场景设计, 核心策略包括利用低ESL/ESR特性实现高频阻抗控制、通过温度稳定材料保障参数致性、采用多层堆叠技术满足高速信号需求
    的头像 发表于 07-25 15:23 368次阅读

    开始量产首款0402英寸47μF多层陶瓷电容器

    株式会社制作所(以下简称“”)今日宣布:公司已开始量产首款(1)尺寸仅为0402英寸
    的头像 发表于 07-11 14:15 468次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>开始量产<b class='flag-5'>村</b><b class='flag-5'>田</b>首款0402英寸47μF多层陶瓷电容器

    贴片电容的高频特性与阻抗匹配

    景展开分析。 、高频特性核心参数 贴片电容的高频性能由 等效串联电阻(ESR)、等效串联电感(ESL) 及 自谐振频率(SRF) 共同决定。以GRM31CC71C226ME11L型号为例,其在1GHz频率
    的头像 发表于 06-25 15:26 504次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>贴片电容的高频特性与阻抗匹配

    贴片电感的高Q值特性如何实现?

    众多高频电路和高速信号传输应用中的首选。本文将探讨贴片电感如何实现其高Q值特性。 贴片电感简介
    的头像 发表于 06-10 14:38 539次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>贴片电感的高Q值特性如何实现?

    贴片电容的高频特性与优势分析

    在当今快速发展的电子行业中,贴片电容作为关键的电子元件,其性能和质量直接影响着电子设备的整体表现。其中,贴片电容以其卓越的高频特性和诸多优势,在市场上赢得了广泛的认可和信赖。
    的头像 发表于 05-08 14:36 496次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>贴片电容的高频特性与优势分析

    电容耐压测试方法详解

    电容作为电子元件中的重要组成部分,其耐压性能直接关系到电子设备的稳定性和可靠性。因此,对电容进行耐压测试是确保电子设备质量的关键步骤。本文将详细介绍
    的头像 发表于 03-25 15:15 1009次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>电容耐压测试方法详解

    固态电池狂飙!全固态2027年碾压?揭秘万亿赛道生死局

    电子发烧友网报道(文/黄山明)随着全球进入到新能源时代,对下一代电池技术的竞争也愈发激烈。而固态电池成为目前既定的方向,吸引到了众多玩家的目光,但固态
    的头像 发表于 03-24 00:15 3116次阅读

    电感如何查真伪?

    电感作为电子元件领域的重要品牌,其产品在市场上广受好评。然而,随着市场的扩大,假冒伪劣产品也层出不穷。为了确保购买到的是正宗电感,以下提供几种鉴别真伪的方法。
    的头像 发表于 03-14 15:00 619次阅读

    电子考虑大规模并购!

    全球最大电容生产商日本村制作所社长中岛规巨表示,公司正在考虑进行超过 1000 亿日 (约 6.65 亿美元) 的并购,以推动公司成长。目标是在截至 2027 财年的中期计划期间内完成。
    的头像 发表于 02-28 15:21 713次阅读

    贴片电阻电容报价是多少

    几十不等。具体来说,小型、低容量的电容可能价格较低,而大型、高容量的电容则可能价格较高。此外,采购数量也会影响单价,通常采购数量越大,单价越低。 二、常见型号及报价 以下列出了些常见型号的
    的头像 发表于 01-20 16:16 1041次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>贴片电阻电容报价是多少

    电容标签材质代码如何看?

    电容的标签上通常包含系列代码,用以表示电容的具体参数和特性。以下是如何解读电容标签上的材质代码的步骤: ​
    的头像 发表于 01-13 14:14 1433次阅读

    电池技术深析:固态电池与NMC三电池的多维解读

    固态电池Semi-SolidStateBattery在当下的电池技术领域,固态
    的头像 发表于 01-07 18:05 4600次阅读
    <b class='flag-5'>电池</b>技术深析:<b class='flag-5'>半</b><b class='flag-5'>固态</b><b class='flag-5'>电池</b>与NMC三<b class='flag-5'>元</b>锂<b class='flag-5'>电池</b>的多维解读

    科普:了解固态固态激光雷达

    。随着技术的发展,激光雷达经历了从机械式到固态再到固态的演变过程。本文将深入探讨固态固态
    的头像 发表于 12-23 18:06 3707次阅读

    贴片电容的电压表示方法

    贴片电容的电压表示方法主要通过其编码系统来体现。每个贴片电容都有个独特的编码,其中包含了关于电容的多种信息,包括其额定电压。以下是
    的头像 发表于 12-16 14:37 1034次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>贴片电容的电压表示方法