0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅MOSFET设计双向降压-升压转换器实现97%能效

jf_pJlTbmA9 2023-12-04 16:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着电池和超级电容等高效蓄能器的大量使用,更好的电流控制成为一种趋势。今天为大家介绍的是一种双向DC-DC转换器,其双向性允许电流发生器同时具备充电和放电能力。双向控制器可以为汽车双电池系统提供出色的性能和便利性,并延长其使用寿命。而且,在降压和升压模式中采用相同的电路模块,大大降低了系统的复杂性和尺寸,甚至可以获得高达97%的能源效率,并且可以控制双向传递的最大电流。

电气原理

图一显示了简单但功能齐全的电气图,其对称配置可让用户选择四种不同的工作模式。它由四个级联降压-升压转换器的单相象限组成,包括四个开关、一个电感器和两个电容器。根据不同电子开关的功能,电路可以降低或升高输入电压。开关元件由碳化硅MOSFET RSM065030W组成,当然也可以用其它器件代替。

wKgZomVdi8mAfykgAAK29jIfDao808.png

图一:双向降压-升压转换器接线图

四种工作模式

用户可以简单配置四个MOSFET来决定电路的工作模式,具体包括如下四种:

电池位于“A”端,负载位于“B”端,从“A”到“B”为降压;

电池位于“A”端,负载位于“B”端,从“A”到“B”为升压;

电池位于“B”端,负载位于“A”端,从“B”到“A”为降压;

电池位于“B”端,负载位于“A”端,从“B”到“A”为升压;

在该电路中,碳化硅MOSFET可以三种不同的方式工作:

导通,对地为正电压;

关断,电压为0;

脉动,具方波和50%PWM。其频率应根据具体工作条件进行选择。

根据这些标准,碳化硅MOSFET的功能遵循图二中所示的表格。

wKgaomVdi8qAVK6tAACH-NscfKY427.png

模式一:降压(Buck)A-B

选择模式一,电路将作为降压器工作,即输出电压低于输入电压的转换器。这种电路也称为“step-down”。其电压发生器需连接在A侧,而负载连接在B侧。负载效率取决于所采用的MOSFET器件。具体配置如下:

SW1:以10 kHz方波频率进行切换;

SW2:关断,即断开开关;

SW3:关断,即断开开关;

SW4:关断,即断开开关。

图三中的曲线图显示了Buck A-B模式下的输入和输出电压。其输入电压为12 V,输出电压约为9 V,因此电路可用作降压器。其开关频率选择为10 kHz,输出端负载为22 Ohm,功耗约为4W。

wKgaomVdi8yAIZDnAABv1plZPgI246.png

图三:Buck A-B模式下的输入和输出电压

模式二:升压A-B

模式二提供升压操作,即作为输出电压高于输入电压的转换器。这种电路也称为“step-up”。电压发生器需连接在A侧,而负载连接在B侧。负载效率取决于所采用的MOSFET器件。具体配置如下:

SW1:导通,即关闭开关(栅级供电);

SW2:关断,即断开开关;

SW3:关断,即断开开关;

SW4:以10 kHz方波频率进行切换。

图四中的曲线图显示了Boost A-B模式下的输入和输出电压。其输入电压为12 V,输出电压约为35V,因此电路可用作升压器。其开关频率选择为10 kHz,输出端负载为22 Ohm,功耗约为55W。

wKgZomVdi82ABdjNAAB9x_gjf20086.png

图四:Boost A-B模式下的输入和输出电压

模式三:降压B-A

选择模式三,电路也作为降压器工作,即输出电压低于输入电压的转换器。其电压发生器需连接在B侧,而负载连接在A侧。负载效率取决于所采用的MOSFET器件。具体配置如下:

SW1:关断,即断开开关;

SW2:关断,即断开开关;

SW3:以100 kHz方波频率进行切换;

SW4:关断,即断开开关。

图五中的曲线图显示了Buck B-A模式下的输入和输出电压。其输入电压为24 V,输出电压约为6.6V,因此电路可用作降压器。其开关频率选择为100 kHz,输出端负载为10 Ohm。

wKgaomVdi86AXo--AABYzsOxqEA499.png

图五:Buck B-A模式下的输入和输出电压

模式四:升压B-A

选择模式四,电路作为升压器工作,即输出电压高于输入电压的转换器。这种电路也称为“step-up”。其电压发生器需连接在B侧,而负载连接在A侧。负载效率取决于所采用的MOSFET器件。具体配置如下:

SW1:关断,即断开开关;

SW2:以100 kHz方波频率进行切换;

SW3:导通,即关闭开关(栅级供电);

SW4:关断,即断开开关。

图六中的曲线图显示了Boost B-A模式下的输入和输出电压。其输入电压为18V,输出电压约为22V,因此电路可用作升压器。其开关频率选择为100 kHz,输出端负载为22 Ohm,功耗约为22W。

wKgaomVdi8-AXWrHAACN6usYqj0727.png

图六:Boost B-A模式下的输入和输出电压

结 论
电路的效率取决于许多因素,首先是所采用的MOSFET导通电阻Rds(on),它决定了电流是否容易通过(见图七)。另外,这种配有四个功率开关的电路需要进行认真的安全检查。如果SW1和SW2(或SW3和SW4)同时处于导通状态,则可能造成短路,从而损坏器件。

wKgZomVdi9GAJp8UAAE1HakniHE835.png

图七:Boost A-B模式下,电感上的脉动电压和电流曲线图

瑞森-碳化硅MOSFET选型

对标 Cree、Rohm、ST;

已成功量产650V,1200V,1700V;

采用沟道自对准工艺制作,器件一致性优异;

具有竞争力的Ronsp,与1代产品相比,Ronsp减小20%,与2代产品相比也具有竞争力;

产品规格:650V-1700V 30mΩ-1Ω;

应用领域:太阳能逆变器高压DC/DC变换器,UPS,新能源汽车充电桩

wKgaomVdi9SABYdDAABr890jog4203.png
wKgZomVdi9WAQAuAAACCCl-7VmE769.png

瑞森半导体
REASUNOS,瑞森半导体是一家致力于功率半导体器件的研发、销售、技术支持与服务为一体的国家高新技术企业,研发团队成员主要来自行业顶尖技术精英和知名院校。现有产品线包括电源管理IC、硅基功率器件、硅基静电保护器件以及碳化硅基功率器件(碳化硅二极管和碳化硅MOS)。经过数年的技术积累和市场开拓,瑞森半导体已经成为全球开关电源、绿色照明、电机驱动、数码家电、安防工程、光伏逆变、5G基站电源、新能源汽车充电桩等行业的长期合作伙伴。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路
    +关注

    关注

    173

    文章

    6064

    浏览量

    177488
  • MOSFET
    +关注

    关注

    150

    文章

    9435

    浏览量

    229745
  • 升压转换器
    +关注

    关注

    2

    文章

    889

    浏览量

    36032
  • 碳化硅
    +关注

    关注

    25

    文章

    3324

    浏览量

    51732
  • 电池
    +关注

    关注

    85

    文章

    11370

    浏览量

    141336
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    四开关降压升压双向DC-DC电源转换器的应用方案

    4开关降压升压双向DC-DC电源转换器在很多应用中都有使用。作为一个同步降压或同步升压
    的头像 发表于 10-17 09:29 1418次阅读
    四开关<b class='flag-5'>降压</b><b class='flag-5'>升压</b><b class='flag-5'>双向</b>DC-DC电源<b class='flag-5'>转换器</b>的应用方案

    倾佳电子:SiC碳化硅功率器件革新混合逆变储系统,引领革命

    倾佳电子:碳化硅功率器件革新混合逆变储系统,引领革命  功率半导体领域的技术变革,正在重塑新能源世界的能源转换效率边界。 全球能源转型
    的头像 发表于 06-25 06:45 620次阅读

    基本半导体碳化硅 MOSFET 的 Eoff 特性及其在电力电子领域的应用

    基本半导体碳化硅 MOSFET 的 Eoff 特性及其在电力电子领域的应用 一、引言 在电力电子技术飞速发展的今天,碳化硅(SiC)MOSFET 凭借其卓越的性能,成为推动高效能电力
    的头像 发表于 06-10 08:38 758次阅读
    基本半导体<b class='flag-5'>碳化硅</b> <b class='flag-5'>MOSFET</b> 的 Eoff 特性及其在电力电子领域的应用

    热泵与空调全面跨入SiC碳化硅功率半导体时代:革命与产业升级

    传统IGBT,成为高效节能解决方案的核心引擎。这场变革不仅意味着的跃升,更将重塑产业竞争格局。 倾佳电子(Changer Tech)-专业汽车连接及功率半导体(SiC碳化硅
    的头像 发表于 06-09 07:07 663次阅读
    热泵与空调全面跨入SiC<b class='flag-5'>碳化硅</b>功率半导体时代:<b class='flag-5'>能</b><b class='flag-5'>效</b>革命与产业升级

    国产SiC碳化硅MOSFET在有源滤波(APF)中的革新应用

    倾佳电子(Changer Tech)-专业汽车连接及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,
    的头像 发表于 05-10 13:38 755次阅读
    国产SiC<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>在有源滤波<b class='flag-5'>器</b>(APF)中的革新应用

    基于氮化镓的碳化硅功率MOSFET高频谐振栅极驱动

    关键作用。本文介绍了一种用于碳化硅升压转换器的氮化镓谐振栅极驱动。该方案不仅能实现高效率,还能在高开关频率下保持良好控制的开关
    的头像 发表于 05-08 11:08 1043次阅读
    基于氮化镓的<b class='flag-5'>碳化硅</b>功率<b class='flag-5'>MOSFET</b>高频谐振栅极驱动<b class='flag-5'>器</b>

    国产碳化硅MOSFET通过技术优势推动GB20943-2025新标准的实现

    能源转换效率、降低功率损耗、优化热管理、增强系统可靠性及环保要求。国产SiC碳化硅MOSFET(以B3M040065H、B3M040065L、B3M040065Z为例)通过以下优势推动新标准的
    的头像 发表于 03-03 17:46 920次阅读
    国产<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>通过技术优势推动GB20943-2025<b class='flag-5'>能</b><b class='flag-5'>效</b>新标准的<b class='flag-5'>实现</b>

    超结MOSFET升级至650V碳化硅MOSFET的根本驱动力分析

    随着BASiC基本半导体等企业的650V碳化硅MOSFET技术升级叠加价格低于进口超结MOSFET,不少客户已经开始动手用国产SiC碳化硅MOSFE
    的头像 发表于 03-01 08:53 982次阅读
    超结<b class='flag-5'>MOSFET</b>升级至650V<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的根本驱动力分析

    碳化硅MOSFET的优势有哪些

    随着可再生能源的崛起和电动汽车的普及,全球对高效能、低能耗电力电子器件的需求日益增加。在这一背景下,碳化硅(SiC)MOSFET作为一种新型宽禁带半导体器件,以其优越的性能在功率电子领域中崭露头角
    的头像 发表于 02-26 11:03 1282次阅读

    碳化硅MOSFET在家庭储双向逆变,中大充)的应用优势

    倾佳电子杨茜以国产碳化硅MOSFET B3M040065L和超结MOSFET对比,并以在2000W家用双向逆变器应用上具体分析BASiC基本股份B3M040065L在家庭储
    的头像 发表于 02-09 09:55 809次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>在家庭储<b class='flag-5'>能</b>(<b class='flag-5'>双向</b>逆变,中大充)的应用优势

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN!

    BASiC基本半导体40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN! BASiC基本半导体40mR/650V SiC 碳化硅
    发表于 01-22 10:43

    产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用

    *附件:国产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用.pdf
    发表于 01-20 14:19

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性
    发表于 01-04 12:37

    什么是米勒钳位?为什么碳化硅MOSFET特别需要米勒钳位?

    《什么是米勒钳位?为什么碳化硅MOSFET特别需要米勒钳位?》后反响热烈,很多朋友留言询问课件资料。今天,我们将这期视频的图文讲义奉上,方便大家更详尽地了解在驱动碳化硅MOSFET时采
    发表于 01-04 12:30

    为什么碳化硅MOSFET特别需要米勒钳位

    各位小伙伴,不久前我们推送了“SiC科普小课堂”视频课——《什么是米勒钳位?为什么碳化硅MOSFET特别需要米勒钳位?》后反响热烈,很多朋友留言询问课件资料。今天,我们将这期视频的图文讲义奉上,方便大家更详尽地了解在驱动碳化硅
    的头像 发表于 12-19 11:39 2926次阅读
    为什么<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>特别需要米勒钳位