0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

复杂域神经网络促进了大规模相干成像的发展

led13535084363 来源:光行天下 2023-07-29 16:22 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

通过提供宽视场和高分辨率功能,计算成像有可能彻底改变光学成像。振幅和相位的联合重建被称为“相干成像或全息成像”——将光学系统的吞吐量扩展到数十亿个光学可分辨点。这一突破使研究人员能够深入了解生物医学研究的细胞和分子结构。 尽管有潜力,现有的大规模相干成像技术面临着广泛临床应用的挑战。许多这些技术需要多次扫描或调制过程,导致较长的数据收集时间,以实现高分辨率和信噪比。由于速度、分辨率和质量之间的权衡,这减慢了成像速度,限制了其在临床环境中的可行性。

最近的图像去噪方法提供了一种潜在的解决方案,即在迭代重建过程中使用去噪算法来提高稀疏数据的成像质量。然而,传统的方法计算复杂,而基于深度学习的技术泛化能力差,并且牺牲了图像细节。

在《Advanced Photonics Nexus》上发表的一项研究中,来自北京理工大学、加州理工学院和康涅狄格大学的一组研究人员展示了一种复杂域神经网络,可以显著增强大规模相干成像。这为各种方式的低采样和高质量相干成像开辟了新的可能性。

复杂域神经网络支持大规模相干成像 该技术利用振幅和相位分量之间的潜在耦合信息,实现复杂波前的多维表示。该框架在各种相干成像模式中具有很强的通用性和鲁棒性。 研究人员利用二维复卷积单元和复激活函数构建了一个网络。他们还开发了一个综合的相干成像多源噪声模型,包括散斑噪声、泊松噪声、高斯噪声和超分辨率重建噪声。多源噪声模型有利于提高合成数据对实际数据的域适应能力。

所报道的技术被应用于几种相干成像模式,包括Kramers-Kronig关系全息术、傅立叶全息显微镜和无透镜编码全息术。大量的模拟和实验表明,该技术保持了高质量的重建和效率,同时显着减少了曝光时间和数据量-通过一个数量级。

高质量的重建为后续的高级语义分析提供了重要的意义,如高精度的细胞分割和虚拟染色,潜在地促进智能医疗的发展。 快速、高分辨率成像的潜力,减少曝光时间和数据量,为实时细胞观察带来了希望。此外,通过结合人工智能诊断,该技术可能会解开复杂生物系统的秘密,并推动医学诊断的界限。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106828
  • 成像
    +关注

    关注

    2

    文章

    291

    浏览量

    31352
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123925

原文标题:复杂域神经网络促进了大规模相干成像的发展

文章出处:【微信号:光行天下,微信公众号:光行天下】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑中神经元之间的动态连接来处理信息,这种网络能够顺序处理数
    的头像 发表于 09-28 10:03 713次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    大规模互连。在这方面,超导体和超导器件具有无损耗特性,可用作神经形态网络中的低功耗互连器件。此外,超导器件还具有前所未有的低功耗和超高速开关特性。 利用超导体或非超导低温器件来模拟大规模
    发表于 09-17 16:43

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的
    的头像 发表于 09-17 13:31 898次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    BP神经网络网络结构设计原则

    ,仅作为数据输入的接口。输入层的神经元个数通常与输入数据的特征数量相对应。 隐藏层 :对输入信号进行非线性变换,是神经网络的核心部分,负责学习输入与输出之间的复杂映射关系。隐藏层可以有一层或多层,层数和
    的头像 发表于 02-12 16:41 1264次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1346次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过训练数据学习到的特征表示
    的头像 发表于 02-12 15:36 1613次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1298次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的
    的头像 发表于 02-12 15:15 1364次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1548次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP
    的头像 发表于 02-12 15:12 1200次阅读

    NPU是如何发展起来的?性能受哪些因素影响?

    问题而设计的。   NPU是如何发展起来的   早在2011年,Google就提出了利用大规模神经网络进行图像识别的技术,并在2012年的ImageNet大赛中取得了显著成绩,这标志着深度学习技术的崛起。   随着深度学习技术的
    的头像 发表于 02-05 07:50 3520次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 856次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2272次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法