0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习入门:简单神经网络的构建与实现

jf_18664067 来源:jf_18664067 作者:jf_18664067 2025-01-23 13:52 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络。

神经网络由多个神经元组成,神经元之间通过权重连接。我们构建一个包含输入层、隐藏层和输出层的简单神经网络。

首先,导入必要的库:

收起

python

import numpy as np

定义激活函数 Sigmoid:

收起

python

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

定义神经网络的结构和参数初始化:

收起

python

# 输入层节点数
input_size = 2
# 隐藏层节点数
hidden_size = 3
# 输出层节点数
output_size = 1

# 初始化权重,使用随机数
weights1 = np.random.randn(input_size, hidden_size)
weights2 = np.random.randn(hidden_size, output_size)

前向传播函数:

收起

python

def forward_propagation(inputs):
    hidden_layer = sigmoid(np.dot(inputs, weights1))
    output_layer = sigmoid(np.dot(hidden_layer, weights2))
    return output_layer

假设我们有一个输入数据:

收起

python

# 示例输入
inputs = np.array([0.5, 0.3])
output = forward_propagation(inputs)
print(f"神经网络的输出: {output}")

在这个简单的神经网络中,输入数据通过权重矩阵与隐藏层和输出层进行计算,经过激活函数处理后得到最终输出。虽然这只是一个简单的示例,但理解其原理是深入学习深度学习的基础。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106810
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123917
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    通过实践,本文总结了构建CNN网络模型并优化的一般化建议,这些建议将会在构建高准确率轻量级CNN神经网络模型方面提供帮助。 1)避免单层神经网络
    发表于 10-28 08:02

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    构建卷积神经网络模型 model = models.Sequential()model.add(layers.Conv2D(input_shape=(28, 28, 1), filters=4
    发表于 10-22 07:03

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络
    的头像 发表于 09-10 17:38 703次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>神经网络</b>

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    神经网络专家系统在电机故障诊断中的应用

    摘要:针对传统专家系统不能进行自学习、自适应的问题,本文提出了基于种经网络专家系统的并步电机故障诊断方法。本文将小波神经网络和专家系统相结合,充分发挥了二者故障诊断的优点,很大程度上降低了对电机
    发表于 06-16 22:09

    BP神经网络网络结构设计原则

    ,仅作为数据输入的接口。输入层的神经元个数通常与输入数据的特征数量相对应。 隐藏层 :对输入信号进行非线性变换,是神经网络的核心部分,负责学习输入与输出之间的复杂映射关系。隐藏层可以有一层或多层,层数和
    的头像 发表于 02-12 16:41 1259次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1324次阅读

    如何优化BP神经网络学习

    优化BP神经网络学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性
    的头像 发表于 02-12 15:51 1439次阅读

    BP神经网络实现步骤详解

    BP神经网络实现步骤主要包括以下几个阶段:网络初始化、前向传播、误差计算、反向传播和权重更新。以下是对这些步骤的详细解释: 一、网络初始化 确定
    的头像 发表于 02-12 15:50 1134次阅读

    BP神经网络的优缺点分析

    学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP
    的头像 发表于 02-12 15:36 1599次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络学习算法。该算法通过计算每层网络的误差,并将这
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络深度学习的关系

    BP神经网络深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播
    的头像 发表于 02-12 15:15 1358次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP
    的头像 发表于 02-12 15:12 1193次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2265次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法