0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是摩尔定律?摩尔定律的本质是什么?

半导体产业纵横 来源:半导体产业纵横 2023-04-10 17:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

什么是摩尔定律

图1于1965 年4月19日由 Gordon Moore 在他的论文“Cramming more components to integrated circuits”(计算机历史博物馆)中发表。

5a392f20-d558-11ed-bfe3-dac502259ad0.png

图 1 由 Gordon Moore 先生首次发表的“摩尔定律” 资料

该图的纵轴是每个集成功能(半导体芯片)的组件(晶体管)数量。此外,由于它被写成Log2,这表明晶体管的数量将呈指数增长。

不过,这个数字只写了1959年到1975年,不能读成“集成水平在两年内翻倍”。

之后,1968年与罗伯特·诺伊斯一起创立英特尔的戈登·摩尔在1975年修正了摩尔定律,称“晶体管集成度每两年翻一番”。截至目前,晶体管的集成度以“每两年翻一番”的速度增长。换句话说,半个多世纪以来,摩尔先生 1965 年的预测一直是半导体行业的指南针。

而摩尔定律的延续背后还有另外一条定律。

登纳德缩放比例定律

1974年,也就是摩尔先生修正摩尔定律的前一年,IBM(美国)的登纳德写了一篇论文,指出“按照一定的规律小型化会提高晶体管的速度,降低功耗,提高集成度”。宣布(图 2)。这被称为登纳德的“比例定律”。

5a6f7242-d558-11ed-bfe3-dac502259ad0.png

图2 Dennard 的比例定律 来源:“具有非常小物理尺寸的离子注入MOSFET的设计”,IEEE Journal of Solid-State Circuits SC-9 (5)

例如,如果我们将图3中的K=2代入,那么晶体管的电路延迟将减半(换言之,速度将增加一倍),功耗将是1/4,集成度将是4倍。此外,每个晶体管的成本也降低了四分之一。

换句话说,如果按照登纳德的“比例定律”将晶体管小型化,提速、功耗、高集成度、成本降低都可以一下子实现,不需要任何电路上的巧思。

简而言之,摩尔定律是增加晶体管数量的罗盘,登纳德的“比例定律”是小型化时性能更高的定律,是汽车的两个轮子,随之而来的是“晶体管集成度在两年内翻了一番,晶体管尺寸在同样的两年内缩小了70%”,这已经持续了半个多世纪(图 3)。

5ae637ce-d558-11ed-bfe3-dac502259ad0.png

图3 延续50多年的摩尔定律(背后有登纳德比例定律)

摩尔定律的本质是什么?

让我们重温一下摩尔定律的本质。2023年2月20日,笔者参加了日本晶体管研究的领军人物、东京大学高木真一教授举办的“半导体器件入门”(科学技术主办)研讨会。想重新学习一下晶体管的基础知识,研究一下晶体管的技术动态。

听了高木教授的讲座,让我明白了摩尔定律本质的新含义。这是因为高木教授对摩尔定律的本质进行了如下解释(图4)。

5b6049d8-d558-11ed-bfe3-dac502259ad0.png

图 4 摩尔定律的本质

第一,晶体管的小型化提高了半导体的附加值。这是因为小型化使得以更低的成本实现更高性能的半导体成为可能。

第二,这种小型化和高集成度的半导体可以扩大市场并获得巨大的利润。

第三,利润将用于下一步的小型化研发和资金投入。

也就是说,摩尔定律的本质就是让这个循环一直循环下去。而通过不断循环这个循环,摩尔定律一直延续了50多年。

下面,我们表明半导体制造商的成功取决于他们保持上述循环运转的能力。

Rapidus和台积电之间的巨大差异

笔者一直对日本新公司Rapidus持负面看法,Rapidus在2022年10月宣布2027年前量产2nm逻辑半导体,做不到的根本。

如果思考一下Rapidus是否能实现图4中的循环,就很容易理解为什么认为 Rapidus 不起作用。Rapidus已宣布到2027年将投资2万亿日元用于开发,3万亿日元用于量产,总计5万亿日元。这笔资金可能会暂时由政府补贴支付。

这对应于图 4 中的第三点,但不可能在第一点之后进行到第二点。换句话说,即使制造出2nm的逻辑半导体(虽然笔者认为很困难),也不可能用该技术实现“第三点,市场扩张和巨大利润”。这是因为没有无晶圆厂公司将生产外包给 Lapidus。如此一来,就无法获得“巨额利润”,也无法投入到2nm之后的下一个1.4nm。

另一方面,走在微型化前沿的台积电,成功循环了摩尔定律的循环。

作为这一点的证据,如图 5 所示,他们已经成功地量产了最先进的半导体,并增加了销售额。尤其是在7nm之后,它成为了唯一的赢家,几乎垄断了最先进的半导体。因此,7nm及以下的销售额比以前更高。

5bb7322a-d558-11ed-bfe3-dac502259ad0.png

图5 台积电按技术节点的季度销售额 来源:作者根据台积电历史运营数据制作的

这样一来,可以说摩尔定律现在被台积电继承了。台积电于2022年12月29日开始量产3纳米。计划在2024-2025年左右开始量产2nm。笔者将关注摩尔定律在未来会持续多久。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    78

    文章

    10250

    浏览量

    146249
  • 半导体器件
    +关注

    关注

    12

    文章

    800

    浏览量

    33851

原文标题:摩尔定律的本质是什么?

文章出处:【微信号:ICViews,微信公众号:半导体产业纵横】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Chiplet,改变了芯片

    1965年,英特尔联合创始人戈登·摩尔提出了“摩尔定律”。半个多世纪以来,这一定律推动了集成电路(IC)性能的提升和成本的降低,并成为现代数字技术的基础。摩尔定律指出,半导体芯片上的晶
    的头像 发表于 10-17 08:33 2909次阅读
    Chiplet,改变了芯片

    摩尔定律 “踩刹车” ,三星 、AP、普迪飞共话半导体制造新变革新机遇

    ,揭示行业正处于从“晶体管密度驱动”向“系统级创新”转型的关键节点。随着摩尔定律放缓、供应链分散化政策推进,一场融合制造技术革新与供应链数字化的产业变革正在上演。
    的头像 发表于 08-19 13:48 1057次阅读
    当<b class='flag-5'>摩尔定律</b> “踩刹车” ,三星 、AP、普迪飞共话半导体制造新变革新机遇

    AI狂飙, FPGA会掉队吗? (上)

    摩尔定律说,集成电路上的晶体管数量大约每两年翻一番。随着晶体管尺寸接近物理极限,摩尔定律的原始含义已不再适用,但计算能力的提升并没有停止。英伟达的SOC在过去几年的发展中,AI算力大致为每两年翻一番
    的头像 发表于 08-07 09:03 952次阅读
    AI狂飙, FPGA会掉队吗? (上)

    Chiplet与3D封装技术:后摩尔时代的芯片革命与屹立芯创的良率保障

    摩尔定律逐渐放缓的背景下,Chiplet(小芯片)技术和3D封装成为半导体行业突破性能与集成度瓶颈的关键路径。然而,随着芯片集成度的提高,气泡缺陷成为影响封装良率的核心挑战之一。
    的头像 发表于 07-29 14:49 731次阅读
    Chiplet与3D封装技术:后<b class='flag-5'>摩尔</b>时代的芯片革命与屹立芯创的良率保障

    晶心科技:摩尔定律放缓,RISC-V在高性能计算的重要性突显

    运算还是快速高频处理计算数据,或是超级电脑,只要设计或计算系统符合三项之一即可称之为HPC。 摩尔定律走过数十年,从1970年代开始,世界领导厂商建立晶圆厂、提供制程工艺,在28nm之前取得非常大的成功。然而28nm之后摩尔定律在接近物理极限之前遇到大量的困
    的头像 发表于 07-18 11:13 4014次阅读
    晶心科技:<b class='flag-5'>摩尔定律</b>放缓,RISC-V在高性能计算的重要性突显

    鳍式场效应晶体管的原理和优势

    自半导体晶体管问世以来,集成电路技术便在摩尔定律的指引下迅猛发展。摩尔定律预言,单位面积上的晶体管数量每两年翻一番,而这一进步在过去几十年里得到了充分验证。
    的头像 发表于 06-03 18:24 1306次阅读
    鳍式场效应晶体管的原理和优势

    电力电子中的“摩尔定律”(2)

    04平面磁集成技术的发展在此基础上,平面磁集成技术开始广泛应用于高功率密度场景,通过将变压器的绕组(winding)设计在pcb电路板上从而代替利兹线,从而极大降低了变压器的高度。然而pcb的铜带厚度并不大,一般不会超过4oz(140μm),因此想要通过pcb传输大电流会有极大的损耗。为
    的头像 发表于 05-17 08:33 534次阅读
    电力电子中的“<b class='flag-5'>摩尔定律</b>”(2)

    跨越摩尔定律,新思科技掩膜方案凭何改写3nm以下芯片游戏规则

    。 然而,随着摩尔定律逼近物理极限,传统掩模设计方法面临巨大挑战,以2nm制程为例,掩膜版上的每个图形特征尺寸仅为头发丝直径的五万分之一,任何微小误差都可能导致芯片失效。对此,新思科技(Synopsys)推出制造解决方案,尤其是
    的头像 发表于 05-16 09:36 5446次阅读
    跨越<b class='flag-5'>摩尔定律</b>,新思科技掩膜方案凭何改写3nm以下芯片游戏规则

    电力电子中的“摩尔定律”(1)

    本文是第二届电力电子科普征文大赛的获奖作品,来自上海科技大学刘赜源的投稿。著名的摩尔定律中指出,集成电路每过一定时间就会性能翻倍,成本减半。那么电力电子当中是否也存在着摩尔定律呢?1965年,英特尔
    的头像 发表于 05-10 08:32 675次阅读
    电力电子中的“<b class='flag-5'>摩尔定律</b>”(1)

    玻璃基板在芯片封装中的应用

    自集成电路诞生以来,摩尔定律一直是其发展的核心驱动力。根据摩尔定律,集成电路单位面积上的晶体管数量每18到24个月翻一番,性能也随之提升。然而,随着晶体管尺寸的不断缩小,制造工艺的复杂度和成本急剧
    的头像 发表于 04-23 11:53 2400次阅读
    玻璃基板在芯片封装中的应用

    瑞沃微先进封装:突破摩尔定律枷锁,助力半导体新飞跃

    在半导体行业的发展历程中,技术创新始终是推动行业前进的核心动力。深圳瑞沃微半导体凭借其先进封装技术,用强大的实力和创新理念,立志将半导体行业迈向新的高度。 回溯半导体行业的发展轨迹,摩尔定律无疑是一个重要的里程碑
    的头像 发表于 03-17 11:33 700次阅读
    瑞沃微先进封装:突破<b class='flag-5'>摩尔定律</b>枷锁,助力半导体新飞跃

    混合键合中的铜连接:或成摩尔定律救星

    混合键合3D芯片技术将拯救摩尔定律。 为了继续缩小电路尺寸,芯片制造商正在争夺每一纳米的空间。但在未来5年里,一项涉及几百乃至几千纳米的更大尺度的技术可能同样重要。 这项技术被称为“混合键合”,可以
    的头像 发表于 02-09 09:21 1117次阅读
    混合键合中的铜连接:或成<b class='flag-5'>摩尔定律</b>救星

    石墨烯互连技术:延续摩尔定律的新希望

    半导体行业长期秉持的摩尔定律(该定律规定芯片上的晶体管密度大约每两年应翻一番)越来越难以维持。缩小晶体管及其间互连的能力正遭遇一些基本的物理限制。特别是,当铜互连按比例缩小时,其电阻率急剧上升,这会
    的头像 发表于 01-09 11:34 868次阅读

    摩尔定律是什么 影响了我们哪些方面

    摩尔定律是由英特尔公司创始人戈登·摩尔提出的,它揭示了集成电路上可容纳的晶体管数量大约每18-24个月增加一倍的趋势。该定律不仅推动了计算机硬件的快速发展,也对多个领域产生了深远影响。
    的头像 发表于 01-07 18:31 2873次阅读