0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

共模电感如何解决数据量增长带来高频EMI问题

lPCU_elecfans 来源:电子发烧友网 2023-04-04 10:07 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

三大无源器件电阻电容和电感是任何硬件电路都离不开的基础被动元器件。各个应用领域内都有着这些被动元器件的身影,这些被动元器件不仅关系到硬件电路整体的稳定性,还决定了电子设备整体质量的优劣。

电感是互感和自感的总成,是闭合电路中基础的物理量。电感器则是利用电感特性,能够把电能转化为磁能而存储起来的元件,由绕组、磁芯等原材料组成,又被称为扼流圈。电感的细分种类不少,其中共模电感是一类解决EMI问题很受欢迎的器件。

数据接口升级带来大量共模噪声干扰

目前数据传输接口、差分线路接口都在往更高的速度迭代,以广泛应用的MIPI为例,2003年成立的MIPI联盟,自2007年发布D-PHY协议,已经从v1.0版本开始已经迭代了多个版本。MIPI D-PHY协议现在已广泛应用在智能手机上面,包括其他的带屏设备。随着带屏设备的快速发展,人们对屏幕的像素,摄像头的像素要求有了更大的提升,协议的传输速率也在快速提升。2011年出现的M-PHY协议,2013年出现的C-PHY协议都是为了进一步提高传输速率。

M-PHY协议因为功耗和相关配套设备的问题应用较少,D-PHY和C-PHY在现在带屏设备中大量应用着。随着协议版本迭代,传输速率逐渐提高,传输速率的提高也带来了更多的高频共模噪声干扰。信号线跟接口之间的共模噪声还有高频噪声,会辐射到周边的器件,使得周边器件的接收灵敏度大幅下降。

在这种应用中,串联一颗共模电感一直是可以有效解决这种高频共模干扰的一种解决方案。除了从源头上减少共模噪声的产生,使用共模电感几乎是最常用且性价比最高的解决EMI问题的办法。

其应用原理也非常简单,在线路中串联共模电感,增大共模回路的阻抗,使得共模电流被电感消耗和阻挡,从而抑制线路中的共模噪声。

共模电感发展趋势

共模电感主要应用在移动通讯、汽车、工业等行业,其中手机等移动通讯领域是共模电感最大的下游市场。虽然移动通讯是电感最大下游市场,但医疗航空、汽车、工业用电感价值量更高,尤其是汽车领域,随着汽车电子系统传输速率进一步升级,数据接口向更高速率迭代也带来了大量共模噪声问题,共模电感的需求水涨船高。

通讯设备和汽车领域对共模电感的大量需求也拉动了共模电感的市场增长,据Global Info Research调研,2021年全球共模电感市场规模约为6.685亿美元,预计2028年将达到9.167亿美元,2022至2028期间年复合增长率为4.6%。

为了应用传输速率升级,共模电感也呈现出高频化的发展趋势。传输速率上去之后,线路上高频噪声的频点就会越来越高,这对共模电感的抑制频点也会要求越来越高。另一个趋势则是被动元器件共同的发展趋势,小型化,主要是为了应对终端设备多功能化导致的设计空间不足,比如像智能手机,功能越来越多,它的PCB板空间受限越来越大,会要求元器件越来越小。

共模电感技术路线

目前来看主流的共模电感路线有两种,一种是通过陶瓷、铁氧体、银进行多材料烧结,在内部形成精细的导电电极并形成多层多圈绕线结构,提升共模阻抗、差模损耗等指标数值。这种技术方案非常契合USB3.0、MIPI和HDMI这些高速差分信号,因为这种电感设计通过改变线圈设计可以实现480MHz-2.4GHz的共模噪声抑制。而且采用高耦合设计,这种技术路线在差分信号的损耗上非常小。

另一种技术路线是将非磁性铁氧体、磁性铁氧体等材料进行烧结,这种方案因为原材料的特性,可以将尺寸做得非常小,在小尺寸上实现大共模阻抗,成型的共模电感可靠性很高。这种技术路线更契合低速宽频的抑制需求,比如USB2.0、MIPI-D PHY。

小结

在数据量不断增长的各种应用里,差分线高频EMI问题会出现得越来越频繁,共模电感是能够以较低成本解决差分线高频EMI问题的不二选择,小型化高频化后的共模电感能够广泛地应用于各种智能设备的差分线路接口。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • emi
    emi
    +关注

    关注

    54

    文章

    3865

    浏览量

    134223
  • 高频
    +关注

    关注

    11

    文章

    493

    浏览量

    54619
  • 共模电感
    +关注

    关注

    9

    文章

    558

    浏览量

    28220

原文标题:共模电感如何解决数据量增长带来高频EMI问题

文章出处:【微信号:elecfans,微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电感抑制EMI分析

    在板卡设计中,电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。
    发表于 03-31 11:13 1.6w次阅读

    电感何解数据量增长带来高频EMI问题

    电子设备整体质量的优劣。   电感是互感和自感的总成,是闭合电路中基础的物理电感器则是利用电感特性,能够把电能转化为磁能而存储起来的元件,由绕组、磁芯等原材料组成,又被称为扼流圈。
    的头像 发表于 04-04 00:19 2939次阅读
    <b class='flag-5'>共</b><b class='flag-5'>模</b><b class='flag-5'>电感</b>如<b class='flag-5'>何解</b>决<b class='flag-5'>数据量</b><b class='flag-5'>增长带来</b><b class='flag-5'>高频</b><b class='flag-5'>EMI</b>问题

    电感工作原理

    `电感工作原理为什么电感能防EMI
    发表于 01-05 15:59

    电感选型-电感定制优势L

    电感,便于安装,可以串联或并联连接,能够适合表面贴装,适用于回流焊。谷景电子的贴片电感,有四个端点,两个绕组。可以根据客户的需求提供可定制服务,
    发表于 09-04 08:52

    电感设计_电感设计方案_电感设计案例

    电感设计 电感设计方案
    发表于 06-01 07:32 600次下载

    电感原理_emi简述

    电感(Common mode Choke),也叫扼流圈,常用于电脑的开关电源中过滤
    发表于 10-30 09:29 8349次阅读

    电感的作用

    电感的大小会直接影响到EMC性能,主要作用是可以隔离信号,衰减外部
    发表于 06-14 14:09 3.6w次阅读

    电感是什么,它将如何解决ESD问题

    电感在很多工程师的印象中,其主要是用来解决EMI问题;其实根据
    发表于 07-01 17:48 3827次阅读

    EMI电感一般是什么材质

    编辑:谷景电子 EMI指的是电磁干扰,EMI电感简单通俗的来说就是用于解决电子产品EMI不过
    发表于 09-09 18:04 3169次阅读

    国内电感厂家科普电感选择如何做

    关于滤波电感的使用问题比较多,近日许多人留言问关于电感电感
    发表于 10-13 09:50 1806次阅读

    国产电感厂家揭秘滤波电感电感越大越好吗

    大家关于滤波电感的使用问题其实还是比较多的,这几天看到有好些人留言问关于电感电感
    发表于 11-01 20:28 2034次阅读
    国产<b class='flag-5'>共</b><b class='flag-5'>模</b><b class='flag-5'>电感</b>厂家揭秘滤波<b class='flag-5'>共</b><b class='flag-5'>模</b><b class='flag-5'>电感电感</b><b class='flag-5'>量</b>越大越好吗

    如何正确选择电感电感

    电感的重要电性能之一,也是我们在做电感
    发表于 04-25 09:28 13次下载

    电感越大越好吗 电感设计过大带来的影响

    在电子设备的设计和制造过程中,电感器是不可或缺的元件。其中,电感就是一种常用的电感器件,主要用于过滤噪声和干扰信号。然而,如果
    发表于 07-24 09:21 7次下载

    电感的感如何选择 电感越大越好吗

    电感是电子电路中非常常见的一种电子元器件,我们在选择电感的时候,需要根据案子的具体需求来
    发表于 08-28 15:37 12次下载

    电感的感会随着频率变化吗

    的确是会随着频率的变化而变化的。简单总结来说就是,在低频段时,电感的感会比较大;但在高频段时,
    的头像 发表于 12-18 09:33 1631次阅读