0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

振镜扫描和光子反聚束的结合-帮你命中想要的色心

昊量光电 来源:昊量光电 作者:昊量光电 2022-11-03 17:15 次阅读

随着量子科学及技术的快速发展,单光子源已成为光量子信息研究中的关键器件,对量子计算起着至关重要的作用。NANOBASE将反聚束实验与快速拉曼和光致发光成像技术联用,该项技术将给科研工作者更便捷的手段进行与量子计算机等新兴技术密切相关的单光子源研究。

单光子源具有独特的量子力学特性,其在量子技术和信息科学中得到了广泛的应用,包括量子计算机开发和密码学技术研究等等。常见的单光子源有金刚石中的氮空位(NV)色心、单个荧光分子、碳纳米管和量子点等。反聚束实验则是鉴别单光子源的重要表征方法。

知识拓展

NV(Nitrogen-Vacancy)色心是金刚石中的一种点缺陷。金刚石晶格中一个碳原子缺失形成空位,近邻的位置有一个氮原子,这样就形成了一个NV色心。

反聚束效应是一种量子力学效应,它揭示了光的类粒子行为。它是由于单光子源一次只能发射一个光子而产生的现象。由于两次光子发射之间必须完成一个激发和弛豫循环,两次光子发射之间的最小间隔主要取决于单光子源的激发态寿命。

当将发光信号分成两束,采用两个检测器同时探测,每个光子只能被其中一个检测器探测到。即在同一时刻仅有一个检测器可以探测到光子。反聚束效应会导致两个探测器的信号在很短的延迟时间内呈现反相关(HBT实验)。

光子反聚束测试功能

和常见的利用机械位移平台的mapping方式相比,采用扫描振镜的mapping方式无需样品发生任何位移,通过光斑在视场内的nm级位移来实现样品的成像。这种方式可以方便的和磁场,低温,CVD等其他设备结合在一起,实现“绝对”的原位测试,避免位移平台本身重复精度累积带来的成像扭曲和定位偏差。

而全新推出的光子反聚束测量模块,在原本拉曼光谱、荧光寿命、光电流成像的基础上新增光子反聚束功能,在方便快捷的进行零声子线的测试的同时,还可以完成光子反聚束的测量,极大的简化色心的搜寻流程,迅速判断制备工艺水平。

该模块有助于研究者用拉曼光谱和光致发光(PL)成像来表征样品,快速确定目标区域(可能有单光子源的区域),随后在同一仪器来进行反聚束实验。

典型案例:

poYBAGNjhZqACY8IAABQQqFYZHo540.png

poYBAGNjhZqAXjWsAAA4ogTrfmQ863.png

poYBAGNjhfaAcfE5AACKARC0XsE241.png

对已经进行过氮离子注入处理过的纳米级金刚颗粒进行光谱分析,从而精准定位符合要求的潜在色心:上图1为在5X物镜下进行快速粗扫后得到的针对零声子线峰位强度成像,图2为40X物镜下粗扫获得的强度图像,可以看到十字标志处单独存在的一个潜在优质色心,图3为该点的PL光谱图,可以清晰看到637nm处的较窄的零声子线。

pYYBAGNjhhqAAGo7AAEf-VnpNgE180.png

利用扫描振镜直接将光斑移动至感兴趣的点位进行HBT测试,上图为测得的单个NV-所体现的光子反聚束现象。

常见的处理金刚石样品的方法有很多,比如以浓硫酸和双氧水配备的食人鱼溶液浸泡和清洗,或者将金刚石样品放入空气中进行高温加热,经过处理后的金刚石样品表面氧化层被去除后,再通过飞秒激光辐射等方法进行N离子的注入,从而生成单个NV色心、多个NV色心发光点,以及高密度NV色心团簇。

与显微共聚焦荧光系统联用的光子反聚束实验具有众多优势。不仅可以快速筛选NV色心的可能区域,还能实现空间分辨及对其单光子发光源特性的研究,这一技术可以有效地协助单光子源的前沿研究,助力新型量子技术的快速筛选和实验。

昊量光电作为NANOBASE公司在中国区域的独家代理商,全权负责其在中国的销售、售后与技术支持工作。如想进一步了解光子反聚束测试,或者有任何问题及反馈建议,欢迎与我们联系。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 振镜
    +关注

    关注

    3

    文章

    18

    浏览量

    14963
  • 量子计算
    +关注

    关注

    4

    文章

    961

    浏览量

    34344
收藏 人收藏

    评论

    相关推荐

    光子集成芯片和光子集成技术是什么

    光子集成芯片和光子集成技术是光子学领域的重要概念,它们代表了光子在集成电路领域的应用和发展。
    的头像 发表于 03-25 14:17 279次阅读

    光子集成芯片基础知识

    光子集成芯片,一种新型的光电子器件,将光子器件与集成电路技术相结合,实现了光信号与电信号的集成处理。它以其独特的工作原理和广泛的应用领域,成为当前科技研究的热点。
    的头像 发表于 03-20 16:10 210次阅读

    首样免费扫描电镜SEM-EDS测试分析【博仕检测】

    【设备应用】 SEM是扫描电子显微,用二次电子成像的原理来观察某种物质的微观形貌。EDS是能谱仪,是每种元素对应的电子能不同,来鉴别元素,通常与SEM结合使用,也就是说在SEM上安装EDS附件,在
    发表于 03-01 18:59

    ADE7878晶不起是为什么?

    参考开发板画的电路,工作模式通过跳线设为模式0,但是上电之后示波器测量晶不起,AVDD,DVDD和REF测量电压为0,电路图见附件,请问可能是什么原因?做了好几块板子都是这样子(ADE7878的封装是用ADI网站的软件导出的,做了钢网用机器焊接,显微
    发表于 12-27 07:13

    LabVIEW开发二维激光扫描控制系统

    LabVIEW开发二维激光扫描控制系统 本项建立一个二维激光扫描控制系统,涵盖了光学系统
    发表于 12-22 11:00

    MMU中的页命中、缺页介绍

    命中、缺页 (1)页命中 • a) 处理器要对虚拟地址VA进行访问。 • b) MMU的TLB没有命中,通过TWU遍历主存页表中的PTEA(PTE地址)。 • c) 主存向MMU返回PTE
    的头像 发表于 11-26 16:19 436次阅读
    MMU中的页<b class='flag-5'>命中</b>、缺页介绍

    解析起点爆点问题及解决方案

    问题背景: 起点爆点问题是在激光器启动时出现的现象,即第一个点的能量过高,可能引发点烧宽等问题。接下来,我们将深入探讨起点爆点问题的根本原因,并向您介绍一项行之有效的解决方案—
    发表于 11-06 10:30

    聚焦离子FIBSEM切片测试【博仕检测】

    聚焦离子-扫描电子显微系统 FIB-SEM应用 聚焦离子-扫描电镜双
    发表于 09-05 11:58

    什么是双光子态 如何测量双光子

    测量双光子态是一项重要的任务,因为它可以让我们了解双光子态的量子特性,以及如何利用它们进行量子信息处理。然而,测量双光子态并不是一件容易的事情,因为它们是非经典的对象,不能用经典的方法来描述。
    发表于 08-31 10:54 692次阅读
    什么是双<b class='flag-5'>光子</b>态 如何测量双<b class='flag-5'>光子</b>态

    为什么激光共聚焦显微成像质量更好?

    相机上成像。 为什么激光共聚焦显微成像质量更好? **1、激光共聚焦显微采用了激光扫描技术。**与传统显微的广谱光源相比,激光扫描技术
    发表于 08-22 15:19

    基于金刚石优异内在特性的光子学应用

    学技术迎来了重大进展。通过化学气相沉积(CVD)合成光学质量金刚石的创新,金刚石色心工程,以及用于制造金刚石光学元件和光子结构的技术,使这些进展成为可能。  基于金刚石优异内在特性的光子学应用  高纯度的金刚石,在紫
    的头像 发表于 06-28 11:03 415次阅读

    光子芯片的原理和应用

    光子芯片是一种基于光子学的集成电路,将光子器件集成在芯片上,实现了光电子集成。相比传统的电子芯片,光子芯片具有更高的数据传输速度、更低的能耗和更大的带宽。
    的头像 发表于 06-21 10:04 7689次阅读

    光子学的发展和光子技术的广泛应用

    ,人类将迈进光子时代,光子学的发展和光子技术的广泛应用将对人类生活产生巨大影响。 关键词 :现代光学;光子学;光子技术;应用;光信息 光学是
    的头像 发表于 06-17 10:15 677次阅读
    <b class='flag-5'>光子</b>学的发展和<b class='flag-5'>光子</b>技术的广泛应用

    高速恒温扫描焊接,高效率,高良品率 #产品方案 #激光 #扫描焊接

    焊接
    武汉松盛光电科技有限公司
    发布于 :2023年06月13日 09:04:32

    衍射编码双光子合成孔径显微术,实现深层活体组织时空跨尺度观测

    传统双光子显微镜使用“点扫描”的方案对三维样本进行扫描,类似于共聚焦荧光显微镜,由于双光子成像的非线性效应使其能够获得数倍于单光子成像的穿透
    的头像 发表于 05-15 15:28 595次阅读
    衍射编码双<b class='flag-5'>光子</b>合成孔径显微术,实现深层活体组织时空跨尺度观测