0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

产生纠缠光子的常见方法

IEEE电气电子工程师 来源:IEEE电气电子工程师 作者:IEEE电气电子工程师 2022-10-18 16:52 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

产生量子纠缠的设备通常体积庞大,且每次只能产生一对纠缠光子。现在,科学家们发明了一种厚度约为一便士三分之一的装置,它不仅可以成对产生复杂的纠缠光子网,还可以将多对纠缠光子连在一起。本发明不仅可以大大简化量子技术所需的设置,而且有助于支持更复杂的量子应用。

据了解,产生纠缠光子的常见方法是将光束照射到一个特殊的“非线性晶体”上。每个晶体都可以将一个光子分裂成两个能量较低、波长较长的纠缠光子。

“传统的纠缠光子产生技术并不灵活,它们只能在通常非常窄的特定波长范围内产生光子对,”合著者Maria Chekhova说,她是德国埃尔朗根马普科学研究所的物理学家。这种窄带宽会限制通信速率。

此外,Chekhova补充道,产生纠缠光子的标准方法最终决定了纠缠光子的许多特性,如波长和偏振。她解释说,如果想进一步操纵这些特征,就需要更多的设备。另外,非线性晶体通常体积较大。对于需要许多纠缠光子的应用来说,这可能很麻烦。“一个量子计算源需要数十或数百个体积庞大的晶体,”研究共同发起人、Albuquerque Sandia国家实验室集成纳米技术中心的物理学家Igal Brener说。

科学家们现在发现,只有大约半毫米厚的设备就足够了。这些设备是亚表面,表面覆盖着大量的微观柱子。Brener说:“我们只需要将一个或多个激光聚焦到一个平坦的样品上,其余的都由亚表面完成。”

每一个亚表面都由一个500微米厚的玻璃表面组成,表面覆盖着砷化镓结构,每个亚表面都类似于约300纳米宽的立方体,上面刻有缺口。调整每个亚表面纳米结构的组成、结构和位置的方式可以帮助科学家控制落在器件上的光的许多特征。

将激光束照射到这些亚表面上会导致纠缠光子出现。Brener说:“原则上,一个亚表面可以产生几种类型的纠缠光子对。使用多光子对创建更复杂的量子状态可以带来进行量子计算、传感、加密等的新方法或更有效的方法。”

此外,亚表面可以操纵一系列纠缠光子的特征,“但我们还并没有探索那个自由度,”Brener说,“机会是巨大的,我们还只触及了表面。”

目前,这些亚表面的效率较低。Chekhova说:“我们的速率不到每秒一对,而标准晶体的速率为每秒数十万对。” 然而,她指出,进一步改进设备可能会将效率提高至少千倍。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米技术
    +关注

    关注

    2

    文章

    202

    浏览量

    26963
  • 光子
    +关注

    关注

    0

    文章

    119

    浏览量

    15212
  • 砷化镓
    +关注

    关注

    4

    文章

    178

    浏览量

    20178

原文标题:Metasurfaces将有助于简化量子信息技术 但也可以实现复杂的应用

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    快速定位MOS故障的常见方法与解决方案

    的关键。本文MDD将探讨常见的MOS故障类型、故障排查方法以及相应的修复方案。一、常见的MOS故障类型MOS管无法导通或无法关断这种故障通常是由栅极驱动信号异常或M
    的头像 发表于 11-25 10:56 261次阅读
    快速定位MOS故障的<b class='flag-5'>常见方法</b>与解决方案

    负电压的产生方法和应用场景

    电子电路中,负电压的产生往往需要特殊配置,但有一种利用运算放大器和地线的简单方法,将运算放大器配置为反相放大器,输入端接地,通过调整电阻和电源电压的参数,就能得到相对于地线的负输出电压。不过这只是负电压产生的其中一种方式,实际应
    的头像 发表于 10-16 09:47 677次阅读

    案例分享|PPLN在频率片编码的纠缠量子密钥分发中的应用

    简介:我们以前分享过《基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用》,探讨了PPLN在时间片QKD中的应用。时间-能量纠缠虽是PPLN最基础的产生形式,但也可以通过“加工”获得
    的头像 发表于 09-22 11:11 356次阅读
    案例分享|PPLN在频率片编码的<b class='flag-5'>纠缠</b>量子密钥分发中的应用

    案例分享 | 基于Sagnac-ppln的宽光谱偏振纠缠光子

    在之前的文章《案例分享|聚焦PPLN:1.48GHz通信波段纠缠光子源的技术创新与商业价值》,我们分享了英国Covesion公司展示的基于MgO:PPLN波导的纠缠光子演示装置(如下图
    的头像 发表于 08-12 11:11 610次阅读
    案例分享 | 基于Sagnac-ppln的宽光谱偏振<b class='flag-5'>纠缠</b><b class='flag-5'>光子</b>源

    案例分享 | 聚焦PPLN:1.48GHz通信波段纠缠光子源的技术创新与商业价值

    生成高速率的纠缠光子对的能力是量子密钥分发(QKD)和量子信息处理(QIP)系统的关键要求。QKD为安全社会提供了前景,包括保护关键信息、基础设施以及有价值的数据,例如国家的电网、水务等系统。而
    的头像 发表于 06-26 11:18 2958次阅读
    案例分享 | 聚焦PPLN:1.48GHz通信波段<b class='flag-5'>纠缠</b><b class='flag-5'>光子</b>源的技术创新与商业价值

    应用介绍 | 单光子计数拉曼光谱

    光子计数拉曼光谱实验装置示意图脉冲激光聚焦在样品表面,激发样品产生荧光和拉曼散射,单光子探测器探测这些受激发射和散射。TimeTagger采集所有光子事件的时间戳并加以实时分析。1►
    的头像 发表于 05-20 16:07 655次阅读
    应用介绍 | 单<b class='flag-5'>光子</b>计数拉曼光谱

    AMD Vivado Design Tool综合中的门控时钟转换

    传统上,使用门控时钟是 ASIC 设计中降低系统功耗的常见方法。通过门控时钟,可在非必要时阻止整组寄存器的状态转换。
    的头像 发表于 05-14 09:05 2024次阅读
    AMD Vivado Design Tool综合中的门控时钟转换

    常见的PFC拓扑架构及控制方法

    本期,芯朋微技术团队将为各位fans分享常见的PFC拓扑架构及控制方法,为设计选型提供参考。
    的头像 发表于 04-27 18:03 6130次阅读
    <b class='flag-5'>常见</b>的PFC拓扑架构及控制<b class='flag-5'>方法</b>

    电机常见故障分析及解决方法

    电机在运行过程中可能会出现多种故障,以下是一些常见故障的分析及解决方法: 一、机械故障 1. 轴承损坏或磨损    ● 故障表现:电机运转不平稳,产生异响,严重时甚至停转。    ● 原因分析:通常
    的头像 发表于 04-25 15:20 4154次阅读
    电机<b class='flag-5'>常见</b>故障分析及解决<b class='flag-5'>方法</b>

    量子技术最新进展 首款高精度量子纠缠光学滤波器问世 还有量子计算机运行十亿级AI微调大模型

    量子纠缠的光学滤波器。这一技术进展为开发紧凑且高性能的纠缠系统打下基础,这些系统可集成到量子光子电路中,从而支持更加可靠的量子计算架构和通信网络。 据悉,因为量子纠缠很容易受到噪声或错
    的头像 发表于 04-08 16:04 1358次阅读

    JCMSuite应用-利用微柱和量子点产生光子

    这个例子的灵感来自Gregersen等人[1],其中将量子点放置在微柱中以产生光子源。但是,我们简化了问题,以便3D计算可以在笔记本电脑上流畅地运行: 微腔的几何形状 下图显示了放置在腔中心的x
    发表于 03-24 09:05

    EastWave应用:自动计算光子晶体透反率

    本案例使用“自动计算透反率模式”研究光子晶体的透反率,将建立简单二维光子晶体结构以说明透反率的计算方法。 模型示意图: 预览网格划分效果如下: 观察到下面的实时场: 记录得到数据如下: 双击
    发表于 02-28 08:46

    Moku实现单光子对符合计数实验指南

    前言光子对的符合计数是量子光学和量子信息科学中的一项重要技术,它检测通过量子过程(通常是参量下转换)同时产生光子对并对其进行计数。在诸如量子密码学、量子传输和量子计算的实验和应用中,这项技术
    的头像 发表于 02-20 10:29 1055次阅读
    Moku实现单<b class='flag-5'>光子</b>对符合计数实验指南

    利用光子混合纠缠提高嘈杂条件下的传送质量

    在远距传物中,量子粒子或量子比特的状态被从一个位置传送到另一个位置,而不传送粒子本身。这种传输需要量子资源,例如一对额外的量子比特之间的纠缠。在理想情况下,量子比特状态的传输和远距传物可以完美完成
    的头像 发表于 02-18 06:17 457次阅读
    利用<b class='flag-5'>光子</b>混合<b class='flag-5'>纠缠</b>提高嘈杂条件下的传送质量

    量子通信的基本原理 量子通信网络的构建

    量子比特(qubit)来表示,它是量子通信的基本单位。 2. 量子纠缠 量子纠缠是量子通信的另一个关键原理。当两个量子粒子(如光子)处于纠缠态时,它们的状态将变得不可分割,即使它们相隔
    的头像 发表于 12-19 15:50 3629次阅读