0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

简化伺服驱动器开发的三种方法

百灵千岛酱 来源:百灵千岛酱 作者:百灵千岛酱 2022-08-22 14:25 次阅读

嵌入式工程师为先进的机器人、自动化机器和运动系统设计现代工业系统,需要将许多元素组合在一起来构建工业伺服驱动器。这包括实时、确定性操作;高计算架构和足够的应用程序内存;以及用于分布式控制的工业网络连接。

不幸的是,这些不同的子系统通常是从过去的旋转简单伺服电机、参加工业以太网协议编程研讨会或参加关于控制理论和算法的暑期班的经验拼凑在一起的。思考这些元素如何真正互连可以产生更高效的多通道运动控制解决方案,该解决方案可针对不同应用进行扩展。

以下是关于如何简化伺服驱动器开发、解决管理多个工业以太网协议的挑战的三个设计案例研究。这包括 Profinet、EtherCAT 和 Ethernet/IP。

传统的伺服驱动解决方案(图 1)包含不同的组件,这些组件必须在最佳情况下“实时”运行以使电机旋转。

pYYBAGLzK4-AP4XwAADkhD5qFXY089.jpg

图 1:传统驱动解决方案。

实时处理器子系统 用于伺服驱动器的现代实时嵌入式系统需要高性能架构来实现使用高载波频率的磁场定向控制算法。当它与位置环结合并与轨迹生成一起使用时,计算负载会增加,特别是如果将第二个运动轴添加到系统中。

许多当前的微控制器解决方案仅在此应用中就耗尽了处理器带宽。使用具有更多处理器带宽的微处理器 (MPU) 或微控制器 (MCU) 的想法是典型的解决方案。

这里的挑战是,随着 CPU 时钟越来越高,内存系统无法跟上,我们需要等待状态或高速缓存。高速缓存在硬实时系统中是有问题的,因为它缺乏有限执行时间所需的确定性。

一个典型的应用程序将使用比缓存中容纳的更多的程序和数据。如果缓存未命中,则必须从较慢的内存中加载代码或数据,这会导致执行时间发生变化。典型的 MPU 内核也缺少向量中断控制器,这需要软件进行更多处理以找到中断源并调度正确的中断服务程序。

如果发生多个中断,高速缓存存储器和中断控制器的影响会导致不确定的行为和无限的执行时间。

实时设计的架构,例如,具有嵌套向量中断控制器和紧密耦合存储器 (TCM),可确保高可用性操作(图 2)。向量中断控制器将通过硬件直接通过向量表调度到适当的中断处理程序,从而最大限度地减少中断延迟。

poYBAGLzK5KAA5l9AABk4ZtT140172.jpg

图 2:具有 TCM 和向量中断控制器的实时架构视图。

TCM 直接连接到与高速缓存相同的内存层次结构的内核。TCM 是一个简单的 SRAM,没有像缓存这样的标签,因此它体积小,实现效率高。接下来,内置双精度浮点单元 (FPU) 充当 CPU 的数学协处理器并简化数学运算。

实时处理器子系统的另一个好处是减少抖动。由于运动涉及非常高速的计算,因此在处理微米级分辨率时,位置控制的准确性至关重要。例如,如果伺服驱动器以 10 m/s 的速度运行,并且以 2 μs 的时间偏移(中断延迟加上抖动)捕获位置,则产生的位置误差将为 0.02 mm。

尽管这似乎并不重要,但及时传播此位置误差将导致生产错误和报废单元。

硬件中的工业以太网加速器工业以太网需要高效的数据包处理,以实现尽可能确定性的通信。典型的 TCP/IP 协议的问题是当 TCP 检查数据的传递并在未成功接收数据时重新传输时的固有延迟。

传统上,帧是使用特定的软件程序来处理的,以处理以太网报头和数据。这显然需要时间,并且可能被视为 CPU 的“开销”,因此会影响 CPU 吞吐量。

工业以太网协议以大约 100 Mbps 的速度运行,并且基于 UDP,因此没有丢包的空间,尤其是在运动控制系统中。许多具有 100 Mbps 和独立于媒体的接口 (MII) 的 MCU 无法处理帧有效负载而没有不确定抖动的风险,因为它没有针对高速数据包处理进行优化。

因为 CPU 需要优先考虑控制循环算法,所以可能会丢失数据包,或者更糟糕的是,非同步分布式运动系统。

如果可以在硬件中实现诸如编码/解码数据包或简单校验和等高速操作,以改善数据包处理并为其他任务卸载 CPU 带宽,则可以改善 RTOS 操作并减少校验和操作的额外开销(图 3 )。

poYBAGLzK5SAYC-vAAEMh5o7TP4182.png

图 3:硬件辅助帧处理。

用于实时控制的固件 固件操作需要根据它们对确定性行为的需要划分为不同的任务。

pYYBAGLzK5iAKrxKAABnSheesQ4991.png

图 4:电机和运动控制应用架构。

围绕虚拟电机模块块构建的固件架构(图 4)将简化开发。它包括执行确定性周期性和非周期性任务的函数。它们在一侧与电机控制硬件接口,在另一侧与其余固件模块接口。

周期性实时任务从产生 PWM 周期的定时器的中断处理程序中调用。它确保控制函数调用的确定性时序。这包括获取当前位置、执行位置控制回路和电流控制回路——也称为磁场定向控制——为下一个 PWM 周期生成占空比,并收集数据以供将来诊断。

非周期性实时任务响应外部模拟数字信号触发的事件。控制功能评估上下文以在电流过载或位置捕获的情况下采取行动。

虚拟电机可以识别不同的命令,提供对所有控制参数和算法的访问。主机可以定期获取信息,跟踪每个电机的状态,控制运动请求的执行。或者,主机可以配置来自不同变量的样本集合,这些变量可以在设备上缓冲并在以后进行分析。

然后可以将电机控制框架实例化为使用共享内存与虚拟电机和其他外围设备交互以与主机通信的包装器。虚拟电机还通过触发可以协调特定应用线程操作的信号量与 RTOS 集成。

实时处理器:关键要点设计您自己的伺服驱动器可能会变得复杂,因为需要适应实时控制、连接性和可针对不同应用程序或产品变体进行扩展的固件架构。

使用实时处理器内核可实现更具确定性的操作并减少抖动。能够利用硬件 IP 来加速和提高网络吞吐量,或者利用可编程模块来支持不同的编码器,可以简化分布式运动和各种协议的管理。

最后,设计能够支持不同类型应用的固件将有助于进一步简化开发过程。考虑到这些因素来进行伺服驱动器设计将有助于您启动并运行构建自己的伺服电机驱动控制器。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18304

    浏览量

    222412
  • 伺服电机
    +关注

    关注

    82

    文章

    1839

    浏览量

    56318
  • 伺服驱动器
    +关注

    关注

    21

    文章

    389

    浏览量

    30554
收藏 人收藏

    评论

    相关推荐

    伺服驱动器的作用与原理、应用领域

    伺服驱动器作为自动化设备的核心部件之一,其作用和原理对于理解自动化设备的工作原理具有重要意义。本文将为您详细介绍伺服驱动器的作用与原理。 一、伺服
    的头像 发表于 01-17 17:52 1201次阅读

    伺服驱动器输出电压的测量方法及注意事项

    伺服驱动器是一种将输入信号转换为精确输出位置或速度的电子设备,广泛应用于自动化控制系统中。为了确保伺服驱动器性能的准确性和稳定性,将其输出电压测量至关重要。本文将详细介绍
    的头像 发表于 01-17 09:34 1209次阅读

    伺服驱动器输出电压怎么测量

    伺服驱动器是一种用于控制伺服电机的设备,它通过输出特定的电压信号来驱动电机转动。因此,测量伺服驱动器
    的头像 发表于 01-15 11:22 1030次阅读

    伺服驱动器怎么设置参数

    伺服驱动器参数的设置方法。 硬件安装 在设置伺服驱动器参数之前,首先需要进行硬件安装。通常,伺服
    的头像 发表于 01-11 10:51 1415次阅读

    伺服电机怎么连接驱动器

    的参数:了解伺服电机和驱动器的额定电压、额定电流、功率等参数。 准备连接线路:为了保证电流传输的可靠性和稳定性,选用合适的连接线,如高质量的导线和插头等。 二、连接方法 伺服电机与
    的头像 发表于 12-20 09:47 1950次阅读

    伺服驱动器故障维修方法有哪些?

    伺服驱动器故障维修方法有哪些?
    的头像 发表于 10-27 09:35 1452次阅读

    伺服驱动器的常见故障和处理方法

    作为一种控制器,伺服驱动器常用于控制伺服电机,在需要高精度的定位系统中,伺服驱动器伺服系统中很
    的头像 发表于 09-09 10:48 2038次阅读

    伺服驱动器的特点及维修技巧

    伺服驱动器的特点1、伺服驱动器软件程序主要包括主程序、中断服务程序、数据交换程序。2、伺服驱动器
    的头像 发表于 09-05 08:09 1037次阅读
    <b class='flag-5'>伺服</b><b class='flag-5'>驱动器</b>的特点及维修技巧

    pwm产生的三种方法

    技术被广泛应用于电力电子器件(如IGBT、MOS)的控制中,也可以用于调节LED照明、伺服电机等应用中。本文将详细介绍PWM产生的三种方法。 一、比较式PWM 比较式PWM是最常见的PWM产生方法,它通过比较一个变量信号与一个固
    的头像 发表于 09-02 10:25 5932次阅读

    什么是伺服驱动器伺服驱动器的工作原理和应用领域

    在现代工业领域,伺服驱动器是一种关键的电气装置,它在机器控制和运动控制系统中发挥着至关重要的作用。无论是工业机器人、数控机床还是自动化生产线,伺服驱动器都是实现精准位置控制和高效运动控
    的头像 发表于 08-21 17:34 2786次阅读

    伺服驱动器故障及维修

    常见伺服故障及处理主要介绍伺服驱动器故障信息的读取及其原因和解决措施。  
    发表于 08-21 10:23 7次下载

    极海APM32F407低压伺服驱动器应用方案

    作为现代工业运动控制的重要组成部分,低压伺服驱动器通过力矩、速度、位置三种方式对伺服电机进行精准控制
    发表于 06-19 16:45 512次阅读
    极海APM32F407低压<b class='flag-5'>伺服</b><b class='flag-5'>驱动器</b>应用方案

    噪声系数测量的三种方法

    本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。
    的头像 发表于 05-18 11:02 894次阅读
    噪声系数测量的<b class='flag-5'>三种方法</b>

    伺服驱动器工作原理图

    伺服驱动器在控制信号的作用下驱动执行电机,因此驱动器是否能正常工作直接影响设备的整体性能。在伺服控制系统中,
    的头像 发表于 05-17 10:05 3447次阅读
    <b class='flag-5'>伺服</b><b class='flag-5'>驱动器</b>工作原理图

    伺服驱动器的常见接线方法

     伺服驱动器在控制信号的作用下驱动执行电机,因此驱动器是否能正常工作直接影响设备的整体性能。在伺服控制系统中,
    的头像 发表于 05-09 14:54 1.7w次阅读
    <b class='flag-5'>伺服</b><b class='flag-5'>驱动器</b>的常见接线<b class='flag-5'>方法</b>