0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过目标回收实现短路固态电解质的直接回收

倩倩 来源:清新电源 作者:清新电源 2022-08-16 09:36 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

‍‍ 研究背景

固态电池(SSBs)将不可燃固态电解质(SSEs)和锂金属负极(LMA)相结合,有望同时实现高能量密度和高安全,因此被认为是下一代电池的有力竞争者。在所有固态电解质中,无机石榴石型Li7La3Zr2O12(LLZO)电解质因其高机械强度、对LMA良好的电化学稳定性和高离子电导率而被认为是一种很有前途的候选材料。然而,LLZO面临在较低临界电流密度(CCD)下被锂枝晶穿透引起的短路问题。尽管研究人员已经提出了很多策略,诸如提高LLZO的离子电导率、降低LLZO的电子电导率或者改善LMA/LLZO界面接触等,但在室温下,锂枝晶穿透LLZO造成短路的问题没有得到根本的解决。而且目前缺少合适的回收方式。经过复杂的合成步骤的LLZO陶瓷片在短路后通常只能被丢弃,造成资源和能源的浪费。到目前为止,LLZO的回收利用问题尚未得到充分探索。考虑到固态电解质的重复利用在固态电池可持续发展中的核心作用,需要设计出合理的回收利用策略。

成果简介 近日,同济大学罗巍教授在《Energy Storage Materials》期刊上发表题为“Direct recycling of shorted solid-state electrolytes enabled by targeted recovery”的文章。此文章主要针对短路的LLZO固态电解质缺乏回收利用方法的问题,提供了一种简单有效的直接回收策略。这篇文章巧妙地利用了锂枝晶及其氧化后的衍生物与LLZO晶粒在900 °C下的原位反应,快速地恢复LLZO的电化学性能,实现了对短路LLZO电解质的直接重复利用。即使在多次短路后,LLZO的电化学性能也可以很好地恢复,这显著延长了LLZO固态电解质的使用寿命。经济和环境分析表明,直接回收电解质相较于重新生产新的电解质,在节省制造时间、能源消耗和生产成本方面具有明显优势。这种简单而有效的直接回收策略有利于固态电池的可持续发展。 关键创新 (1)提出一种直接回收利用的方法,能够简单高效地恢复短路LLZO陶瓷片的电化学性能。 (2)直接回收策略在经济和环境方面具有潜在价值,为固态电池的可持续发展开辟的道路。 图文解读

ce11270a-1cfc-11ed-ba43-dac502259ad0.png

图1.LLZO直接回收策略示意图。 LLZO石榴石型固态电解质因为其较高的室温离子电导率(10-4-10-3S/cm),良好的电化学稳定性以及较高的力学强度受到研究人员的广泛关注。但电池在室温运行中,LLZO会被锂枝晶穿透,从而发生短路。大量工作把重点放在如何提升LLZO抵抗枝晶穿透能力上,很少有工作关注到短路后的LLZO回收利用的问题。在实验中,我们发现LLZO中的锂枝晶非常容易被氧化成氢氧化锂和碳酸锂。氢氧化锂和碳酸锂都是合成LLZO的原材料。以钽元素掺杂的Li6.5La3Zr1.5Ta0.5O12LLZO电解质为例,在900 °C下,氢氧化锂/碳酸锂与氧化钽,氧化镧以及氧化锆发生反应,生成立方相LLZO。考虑到LLZO电解质在高温致密化烧结(1200 °C)的过程中,会不可避免的产生挥发性锂化合物(VLC,主要是Li2O)而造成LLZO中的锂损失。在篇文章中,我们提出利用氧化后的锂枝晶作为锂源,使其与有锂缺损的LLZO晶粒原位反应,从而达到消除锂枝晶,恢复其电化学性能的目的。图1中的示意图展现了直接回收利用的过程。

ce22d626-1cfc-11ed-ba43-dac502259ad0.png

图2.短路后LLZO电解质的表征。(a)Li|LLZO|Li对称电池极限电流密度测试;(b)短路前后对称电池的阻抗谱图;(c)短路前后LLZO陶瓷片的照片;(d-e)黑色斑点的扫描电子显微镜照片(背散射电子模式)以及对应的能谱分析;(f)黑色斑点的光电子能谱分析。 图2是对短路后的LLZO陶瓷片的表征。可以看到短路后的陶瓷片阻抗大幅度降低。而且短路后的LLZO陶瓷片表面出现了很多黑色的斑点。进一步对这些黑色区域进行扫描电镜和光电子能谱的分析发现,这些黑色斑点是由氢氧化锂以及少量碳酸锂所组成。

ce5e7d48-1cfc-11ed-ba43-dac502259ad0.png

图3.900 °C 30分钟处理后LLZO的数码照片、XRD曲线和电化学性能。处理前后陶瓷片的光学照片(a),XRD图谱(b),EIS图谱(c)以及CCD测试结果(d);修复后LLZO陶瓷片对称电池长循环测试(e)以及全电池测试结果(f-h)。 从图3中可以看到,经过900 °C 30分钟处理后,短路陶瓷片表面的黑色斑点全部消失。而且处理后的LLZO陶瓷片展现出与未短路的LLZO陶瓷片一样的极限电流密度。除此以外,处理后的LLZO陶瓷片也展现了非常好的长循环性能以及全电池性能。这证明了短时间的热处理能够有效地恢复短路LLZO陶瓷片的电化学性能。

ce75a43c-1cfc-11ed-ba43-dac502259ad0.png

图4.短路LLZO电解质中锂枝晶加热过程中形貌演变的环境扫描电子显微镜原位观察。

ceb07e0e-1cfc-11ed-ba43-dac502259ad0.png

图5.新鲜的LLZO、短路的LLZO和修复后的LLZO横截面扫描电子显微镜图像。 为了探究在LLZO电解质修复的机理,我们用原位环境扫描电子显微镜和高分辨电子显微镜分别对锂枝晶在加热过程中的变化进行了观察。图4和图5的结果显示,锂枝晶会在热处理过程中与周围晶粒发生反应,互相扩散,并最终变成形状与LLZO晶粒类似的多面体结构。

cee0918e-1cfc-11ed-ba43-dac502259ad0.png

图6.直接回收方法的经济和能耗分析。(a)合成一个新的LLZO陶瓷片的流程图;(b)修复一个短路LLZO陶瓷片的流程图;合成一个新LLZO电解质和直接修复一个短路LLZO电解质在时间(c),能源消耗(d)以及经济成本方面的对比(e)。 从图6中可以看出,相比于生产新的LLZO电解质,我们提出的直接回收利用策略在节省处理时间、节省能源消耗和降低制造费用方面具有明显优势。所有这些优点都与经济和环境效益相关联,有利于固态电池的可持续发展。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电化学
    +关注

    关注

    1

    文章

    334

    浏览量

    21184
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21234

原文标题:同济大学罗巍ESM:一种针对短路固态电解质的直接回收利用策略

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MLPC的抗振性能如何与液态电解质电容比拟

    MLPC(固态叠层高分子电容)的抗振性能显著优于液态电解质电容 ,其核心优势体现在结构稳定性、材料特性及实际应用表现三方面,具体分析如下: 一、结构稳定性:无液态泄漏风险,振动下结构完整 固态
    的头像 发表于 11-22 10:49 574次阅读
    MLPC的抗振性能如何与液态<b class='flag-5'>电解质</b>电容比拟

    巴西研究团队推进钠离子电池电解质计算研究

    浓度的影响。”研究团队通过分子动力学模拟,利用圣保罗大学及德国波恩大学等机构的计算资源,解析离子在电解质中的相互作用机制。
    的头像 发表于 11-12 16:19 100次阅读
    巴西研究团队推进钠离子电池<b class='flag-5'>电解质</b>计算研究

    固态电容和电解电容的优劣势对比,怎么选?

    固态电容和电解电容(通常指液态电解电容)的主要区别在于 介电材料(电解质)的不同 ,这导致了它们在性能、寿命、应用和价格上的一系列差异。
    的头像 发表于 10-24 18:15 1388次阅读

    突破性固态聚合物电解质:像拼图一样组装分子,打造安全高压锂电池

    【美能锂电】观察:为高比能锂金属电池开发安全且耐高压的固态聚合物电解质,是当前电池研究的重要方向。传统液态锂电池因易燃易爆的特性,给电动汽车等应用带来了安全隐患。同时,石墨负极体系也限制了电池能量
    的头像 发表于 09-30 18:04 2635次阅读
    突破性<b class='flag-5'>固态</b>聚合物<b class='flag-5'>电解质</b>:像拼图一样组装分子,打造安全高压锂电池

    液态电解电容与固态电解电容材质的差别

    液态电解电容与固态电解电容在材质上的核心差别在于 介电材料 和 阴极材料 ,这一差异直接决定了两者在性能、应用场景及可靠性上的显著不同,具体如下: 1. 介电材料:氧化铝层相同,但
    的头像 发表于 08-13 16:35 902次阅读
    液态<b class='flag-5'>电解</b>电容与<b class='flag-5'>固态</b><b class='flag-5'>电解</b>电容材质的差别

    锂离子电池电解质填充工艺:技术原理与创新实践

    在锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应用中实现
    的头像 发表于 08-11 14:53 630次阅读
    锂离子电池<b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    钽元素赋能LLZO固态电解质,破解氧化物固态电池产业化密码

    电子发烧友网综合报道 在全球能源转型的浪潮中,固态电池技术被视为突破传统锂离子电池能量密度与安全性瓶颈的关键所在。氧化物固态电解质凭借其出色的化学稳定性和宽温域适应性,逐渐成为与硫化物路线并驾齐驱
    的头像 发表于 05-26 09:29 8261次阅读

    钽元素赋能LLZO固态电解质,破解氧化物固态电池产业化密码

    电子发烧友网综合报道 在全球能源转型的浪潮中,固态电池技术被视为突破传统锂离子电池能量密度与安全性瓶颈的关键所在。氧化物固态电解质凭借其出色的化学稳定性和宽温域适应性,逐渐成为与硫化物路线并驾齐驱
    发表于 05-26 07:40 2017次阅读

    超声波焊接有利于解决固态电池的枝晶问题

    电池(SSLMBs)作为一种极具潜力的储能技术,由于其固有的高安全性和实现高能量密度的潜力备受关注。然而,其实际应用受制于严峻的界面问题,主要表现为固态电解质与锂金属之间润湿性差、电(化学)不稳定性
    发表于 02-15 15:08

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处锂沉积行为的影响

    全性的全固态锂金属电池的最具潜力的候选电解质材料之一。 尽管如此,仍有大量研究表明,即使在较低的电流密度下(0.5-1 mA/cm2),全固态金属锂电池中锂枝晶穿透硫化物固态
    的头像 发表于 02-14 14:49 734次阅读
    清华大学:自由空间对硫化物<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>表面及内部裂纹处锂沉积行为的影响

    陈军院士团队最新Angew,聚合物电解质新突破

    研究背景 固态锂金属电池(SSLMBs)因其高的能量密度和优异的安全性能在能源存储领域受到广泛关注。然而,现有固态电解质(SSEs)普遍存在离子传导性差、电极界面稳定性不足等问题,极大地限制了其实
    的头像 发表于 01-06 09:45 2100次阅读
    陈军院士团队最新Angew,聚合物<b class='flag-5'>电解质</b>新突破

    镁合金牺牲阳极与电解质接触不良的原因

    一、埋设深度不足 镁阳极的埋设深度决定了其与周围电解质的接触面积和接触质量。如果埋设深度不足,阳极可能与电解质的接触不良,导致保护电流分布不均,影响保护效果。特别是在地下水位较低或土壤干燥的区域
    的头像 发表于 01-02 21:00 526次阅读
    镁合金牺牲阳极与<b class='flag-5'>电解质</b>接触不良的原因

    Li3MX6全固态锂离子电池固体电解质材料

        研究背景 Li3MX6族卤化物(M = Y、In、Sc等,X =卤素)是新兴的全固态锂离子电池固体电解质材料。与现有的硫化物固体电解质相比,它们具有更高的化学稳定性和更宽的电化学稳定窗口
    的头像 发表于 01-02 11:52 1816次阅读
    Li3MX6全<b class='flag-5'>固态</b>锂离子电池固体<b class='flag-5'>电解质</b>材料

    一种薄型层状固态电解质的设计策略

    通量、足够的机械强度以及与电极的粘附性接触等性质。目前,集无机和有机成分优点于一体的复合固态电解质(CSE)有望实现均匀、快速的锂离子通量,但如何打破机械强度和粘附力之间的权衡仍然是一个挑战。此外,现有CSE的厚度往往较大,这对
    的头像 发表于 12-31 11:21 1501次阅读
    一种薄型层状<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于高电压锂金属电池

    研究背景 基于高镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极与电解质界面之间的有害副反应
    的头像 发表于 12-23 09:38 1733次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于高电压锂金属电池