0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CoolSiC MOSFET技术在电源转换系统中的应用

吴湛 来源:英飞凌科技 作者:Peter Friedrichs 2022-08-09 08:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

碳化硅 (SiC)晶体管越来越多地用于功率转换器,对尺寸、重量和/或效率提出了很高的要求。与双极 IGBT 器件相比,碳化硅出色的材料特性支持设计快速开关的单极器件。因此,迄今为止只能在低压领域 (<600 V) 实现的解决方案现在也可以在更高的电压下实现。结果是最高的效率、更高的开关频率、更少的散热和节省空间——这些好处反过来也可以导致总体成本更低。

同时,MOSFET 已被普遍接受为首选概念。最初,JFET 结构似乎是在 SiC 晶体管中结合性能和可靠性的最终选择。然而,随着现在150mm晶圆技术的成熟,基于沟槽的SiC MOSFET也变得可行,因此现在可以解决DMOS性能或高可靠性的困境。

碳化硅简介

基于宽带隙的功率器件,例如 SiC 二极管和晶体管,或GaN HEMT(高电子迁移率晶体管)是当今电力电子设计人员库中的既定元素。但是,与硅相比,SiC 有什么吸引人的地方?是什么特性使 SiC 组件如此吸引人,以至于尽管与硅高压器件相比成本更高,但仍被如此频繁地使用?

在功率转换系统中,人们不断努力减少功率转换过程中的能量损失。现代系统基于与无源元件结合打开和关闭固态晶体管的技术。对于与所用晶体管相关的损耗,有几个方面是相关的。一方面,必须考虑传导阶段的损耗。在 MOSFET 中,它们由经典电阻定义;在 IGBT 中,有一个固定的传导损耗决定因素,其形式为拐点电压 (V ce_sat ) 加上输出特性的差分电阻。阻塞阶段的损失通常可以忽略。

然而,在开关过程中,导通和关断状态之间总是有一个过渡阶段。相关损耗主要由器件电容定义;在 IGBT 的情况下,由于少数载流子动力学(开启峰值、尾电流),还有进一步的贡献。基于这些考虑,人们会期望选择的器件始终是 MOSFET,但是,尤其是对于高电压,硅 MOSFET 的电阻变得如此之高,以至于总损耗平衡不如可使用电荷调制的 IGBT通过少数载流子来降低导通模式的电阻。图 1 以图形方式总结了这种情况。

pYYBAGHFcoaAEPy1AAAoMP70YgM382.jpg

图 1:MOSFET(HV 表示与 IGBT 相似的阻断电压 – 1200 V 及更高)和 IGBT 之间的开关过程(左,假设 dv/dt 相同)和静态 IV 行为(右)的比较

当考虑宽带隙半导体时,情况会发生变化。图 2 总结了 SiC 和 GaN 与硅的最重要的物理特性。重要的是,带隙与半导体的临界电场之间存在直接相关性。在碳化硅的情况下,它比硅高约 10 倍。

pYYBAGHFcpOASI6JAAA7C-w_xkk004.jpg

图2:功率半导体材料重要物理性能对比

有了这个特性,高压器件的设计就不同了。图 3 显示了使用 5 kV 半导体器件示例的影响。在硅的情况下,由于中等的内部击穿场,人们被迫使用相对较厚的有源区。此外,只有少数掺杂剂可以掺入有源区,从而导致高串联电阻(如图 1 所示)。

pYYBAGHFcp-AWKKEAABAlWqoDPA391.jpg

图 3:5 kV 功率器件的尺寸——硅和 SiC 之间的区别

由于 SiC 中的击穿场高 10 倍,因此可以将有源区做得更薄,同时可以结合更多的自由载流子,因此导电性显着提高。可以说,在 SiC 的情况下,快速开关单极器件(如 MOSFET 或肖特基二极管)与较慢的双极结构(如 IGBT 和 pn 二极管)之间的过渡现在已经转移到更高的阻断电压(见图 4)。或者,反过来,硅在 50 V 左右的低压区域中可能实现的功能现在也可以在 1200 V 器件中使用 SiC。

英飞凌在 25 年前就发现了这种潜力,并组建了一个专家团队来开发这项技术。这条道路上的里程碑是 2001 年在全球首次推出基于 SiC 的肖特基二极管,2006 年首次推出包含 SiC 的功率模块,以及最近在 2017 年,菲拉赫创新工厂全面转向 150 毫米晶圆技术,与全球最具创新性的 Trench CoolSiC™ MOSFET 首次亮相。

pYYBAGHFcqqACdreAAA7ItbbXh4689.jpg

图 4:高电压器件概念,硅和 SiC 之间的比较

现代功率器件领域中的 SiC MOSFET

如上一段所述,如今 SiC MOSFET 大部分用于 IGBT 是首选组件的领域。图 5 总结了 SiC MOSFET 与 IGBT 的主要优势。特别是在部分负载时,由于线性输出特性,与具有拐点电压的 IGBT 情况相反,可以显着降低传导损耗。此外,理论上可以通过使用更大的器件面积将传导损耗降低到无限小的数字。这在 IGBT 的情况下被排除。

关于开关损耗,传导模式中缺少少数载流子消除了尾电流,因此可以实现非常小的关断损耗。与 IGBT 相比,开通损耗也有所降低,这主要是由于开通电流峰值较小。两种损耗类型都没有显示温度升高。然而,与 IGBT 相比,开通损耗占主导地位,而关断损耗很小,这与 IGBT 的情况通常相反。最后,不需要额外的续流二极管,因为垂直 MOSFET 结构本身包含一个强大的体二极管。该体二极管基于 pn 二极管,在 SiC 的情况下,其拐点电压约为 3 V。

有人可能会争辩说,在这种情况下,二极管模式下的传导损耗非常高,但是,建议(以及低压硅 MOSFET 的最新技术)在二极管模式下工作,以实现短的死区时间二极管传导,对于硬开关,介于 200 ns 和 500 ns 之间,对于 ZVS 等谐振拓扑,< 50 ns。然后可以通过施加正栅极偏压来开启通道,由于缺乏拐点电压,这具有与晶体管模式导通状态相同的优势。由于二极管是双极元件,反向恢复作用也很小;然而,对开关损耗的总体影响可以忽略不计。

英飞凌最近还推出了 650 V CoolSiC™ MOSFET 衍生物,将部署在完整的 650 V 产品组合中。该技术不仅旨在补充这种阻断电压等级的 IGBT,而且还旨在补充成功的CoolMOS™ 技术。两种器件都具有快速开关和线性 IV 特性;然而,碳化硅 MOSFET 使体二极管能够在硬开关和高于 10 kHz 的开关频率下运行。与超级结器件相比,它们在输出电容 (Q oss) 结合更平滑的电容与漏极电压特性。这些特性使 SiC MOSFET 能够在半桥和 CCM 图腾柱等高效桥拓扑中使用,而 CoolMOS™ 器件在不存在或可以防止导电体二极管硬换向的应用中具有优势。

这为 600 V 至 900 V 电压等级的 SiC 和超级结 MOSFET 的成功共存奠定了基础。应用要求将决定最适合设计人员的技术选择。

poYBAGHFcrWAduAgAAB5ZREAwfg554.jpg

图 5:SiC MOSFET 与 IGBT 的优势总结:左动态损耗、右导通行为、左上集成体二极管

结论

英飞凌的设备设计始终以有益的性价比评估为导向,并非常强调卓越的可靠性,而这正是客户习惯于从英飞凌获得的。英飞凌 SiC 沟槽 MOSFET 的概念遵循相同的理念。它结合了低导通电阻和优化设计,可防止过多的栅极氧化物场应力,并提供类似于 IGBT 的栅极氧化物可靠性。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    185

    文章

    18724

    浏览量

    261627
  • 转换器
    +关注

    关注

    27

    文章

    9374

    浏览量

    155252
  • MOSFET
    +关注

    关注

    150

    文章

    9462

    浏览量

    229961
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    SL3043宽电压降压转换器:10-120V输入至1.25-50V输出的高效电源

    景优势‌ 电动车转换系统,SL3043可稳定将电池组高压转换为车载设备所需低压;工业电力环境
    发表于 12-10 15:24

    ​高压隔离探头能源变换系统的精确测量应用方案​

    现代电力电子领域,高压隔离探头作为关键测量设备,其性能直接影响能源变换系统的测试准确性和可靠性。本文通过光伏发电和电机驱动两个典型场景,深入分析高压隔离探头的技术选型策略和精确测量方法。 一、光伏
    的头像 发表于 11-11 13:35 102次阅读

    倾佳电子面向电力电子功率变换系统的高可靠性1700V碳化硅MOSFET反激式辅助电源设计

    倾佳电子面向电力电子功率变换系统的高可靠性1700V碳化硅MOSFET反激式辅助电源设计 倾佳电子(Changer Tech)是一家专注于功率半导体和新能源汽车连接器的分销商。主要服务于中国工业
    的头像 发表于 11-03 11:26 374次阅读
    倾佳电子面向电力电子功率变<b class='flag-5'>换系统</b>的高可靠性1700V碳化硅<b class='flag-5'>MOSFET</b>反激式辅助<b class='flag-5'>电源</b>设计

    倾佳电子1400V碳化硅MOSFET综合分析:器件特性与在先进电源转换系统的应用价值

    倾佳电子1400V碳化硅MOSFET综合分析:器件特性与在先进电源转换系统的应用价值 倾佳电子(Changer Tech)是一家专注于功率半导体和新能源汽车连接器的分销商。主要服务于
    的头像 发表于 10-26 18:10 807次阅读
    倾佳电子1400V碳化硅<b class='flag-5'>MOSFET</b>综合分析:器件特性与在先进<b class='flag-5'>电源</b><b class='flag-5'>转换系统</b><b class='flag-5'>中</b>的应用价值

    倾佳电子SiC碳化硅微电网储能领域的崛起:功率变换系统拓扑与技术趋势的技术分析

    倾佳电子SiC碳化硅微电网储能领域的崛起:功率变换系统拓扑与技术趋势的技术分析 倾佳电子(Changer Tech)是一家专注于功率半导体和新能源汽车连接器的分销商。主要服务于中国工
    的头像 发表于 10-19 09:19 199次阅读
    倾佳电子SiC碳化硅<b class='flag-5'>在</b>微电网储能领域的崛起:功率变<b class='flag-5'>换系统</b>拓扑与<b class='flag-5'>技术</b>趋势的<b class='flag-5'>技术</b>分析

    PPKTP晶体波长转换的特性分析与应用选择

    波长转换技术激光系统、量子光学和光谱分析等领域具有重要作用,其核心是通过非线性光学效应实现高效、灵活的波段调谐。众多非线性晶体
    的头像 发表于 09-29 17:36 646次阅读
    PPKTP晶体<b class='flag-5'>在</b>波长<b class='flag-5'>转换</b><b class='flag-5'>中</b>的特性分析与应用选择

    CoolSiC™ 2000V SiC 沟槽栅MOSFET定义新能源应用功率密度增强的新基准

    本文为2024年PCIM论文更多精彩内容请关注2025PCIM本文介绍了新的CoolSiC2000VSiC沟槽栅MOSFET系列。该系列单管产品采用新的TO-247PLUS-4-HCC封装,具有
    的头像 发表于 08-29 17:10 1480次阅读
    <b class='flag-5'>CoolSiC</b>™ 2000V SiC 沟槽栅<b class='flag-5'>MOSFET</b>定义新能源应用<b class='flag-5'>中</b>功率密度增强的新基准

    浅谈辰达MOSFETUSB PD快充电源的应用挑战与应对

    USBPD快充电源设计MOSFET作为功率控制与转换的核心器件,发挥着关键作用。随着充电功率向65W、100W甚至更高迈进,对
    的头像 发表于 07-08 09:43 357次阅读
    浅谈辰达<b class='flag-5'>MOSFET</b><b class='flag-5'>在</b>USB PD快充<b class='flag-5'>电源</b><b class='flag-5'>中</b>的应用挑战与应对

    英飞凌推出具有超低导通电阻的CoolSiCMOSFET 750 V G2,适用于汽车和工业功率电子应用

    MOSFET 750 V G2。这款新型CoolSiCMOSFET 750 V G2专为提升汽车及工业功率转换应用的系统效率和功率密
    发表于 07-02 15:00 1570次阅读
    英飞凌推出具有超低导通电阻的<b class='flag-5'>CoolSiC</b>™ <b class='flag-5'>MOSFET</b> 750 V G2,适用于汽车和工业功率电子应用

    新品 | 采用顶部散热QDPAK的CoolSiC™ 1200V G2 SiC MOSFET半桥产品

    驱动、电动汽车充电、太阳能和不间断电源等。顶部散热QDPAK具有出色的散热性能,更易于组装,从而降低了客户的系统成本。与底部散热解决方案相比,顶部散热器件可实现更
    的头像 发表于 05-27 17:03 1163次阅读
    新品 | 采用顶部散热QDPAK的<b class='flag-5'>CoolSiC</b>™ 1200V G2 SiC <b class='flag-5'>MOSFET</b>半桥产品

    SiC MOSFET模块英伟达800V HVDC电源系统技术优势与应用价值

    基本半导体BMF240R12E2G3 SiC MOSFET模块英伟达800V HVDC电源系统技术
    的头像 发表于 05-23 06:50 1094次阅读
    SiC <b class='flag-5'>MOSFET</b>模块<b class='flag-5'>在</b>英伟达800V HVDC<b class='flag-5'>电源</b><b class='flag-5'>系统</b><b class='flag-5'>中</b>的<b class='flag-5'>技术</b>优势与应用价值

    MOSFET开关损耗计算

    )与电源转换技术来提高电源转换效率之外,新式功率器件高效能
    发表于 03-24 15:03

    一文带你读懂MOSFET开关损耗计算!!(免积分)

    )与电源转换技术来提高电源转换效率之外,新式功率器件高效能
    发表于 03-06 15:59

    英飞凌推出采用Q-DPAK和TOLL封装的全新工业CoolSiC MOSFET 650 V G2

    公司(FSE代码:IFX / OTCQX代码:IFNNY)正在扩展其CoolSiC MOSFET 650 V单管产品组合,推出了采用Q-DPAK和TOLL封装的两个全新产品系列。 CoolSiC
    的头像 发表于 02-21 16:38 733次阅读
    英飞凌推出采用Q-DPAK和TOLL封装的全新工业<b class='flag-5'>CoolSiC</b> <b class='flag-5'>MOSFET</b> 650 V G2

    MOSFET农业自动喷洒系统的应用 #工业 #半导体 #农业 #电子 #MOSFET

    MOSFET
    微碧半导体VBsemi
    发布于 :2024年12月31日 16:56:05