0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

提高差分放大器的共模抑制比

analog_devices 来源:亚德诺半导体 作者:亚德诺半导体 2022-06-01 09:41 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在各种应用领域,采用模拟技术时都需要使用差分放大器电路,如图 1 所示。例如测量技术,根据其应用的不同,可能需要极高的测量精度。为了达到这一精度,尽可能减少典型误差源(例如失调和增益误差,以及噪声、容差和漂移)至关重要。为此,需要使用高精度运算放大器放大器电路的外部元件选择也同等重要,尤其是电阻,它们应该具有匹配的比值,而不能任意选择。

65ad22c8-e14b-11ec-ba43-dac502259ad0.jpg

图 1. 传统的差分放大器电路。

理想情况下,差分放大器电路中的电阻应仔细选择,其比值应相同 (R2/R1 = R4/R3)。这些比值有任何偏差都将导致不良的共模误差。差分放大器抑制这种共模误差的能力以共模抑制比(CMRR) 来表示。它表示输出电压如何随相同的输入电压(共模电压)而变化。在最佳情况下,输出电压不应该改变,因为它只取决于两个输入电压之间的差值(最大 CMRR);但是,实际使用中情况会有所不同。CMRR 是差分放大器电路的重要特性,通常以 dB 来表示。

对于图 1 所示的差分放大器电路,CMRR 取决于放大器本身以及外部连接的电阻。对于后者,取决于电阻的 CMRR 在本文下述部分以下标"R"表示,并利用下式计算:

65c2cf92-e14b-11ec-ba43-dac502259ad0.jpg

例如,在放大器电路中,所需增益 G = 1 且使用容差为 1%、匹配精度为 2% 的电阻产生的共模抑制比为

65ea02c4-e14b-11ec-ba43-dac502259ad0.jpg

或者

6620bdfa-e14b-11ec-ba43-dac502259ad0.jpg

在 34 dB时,CMRRR相对较低。在这种情况下,即使放大器具有非常好的 CMRR,也无法实现高精度,因为链路的精度总是取决于其精度最差的环节。因此,对于精密的测量电路而言,必须非常精确地选择电阻。

实际使用中传统电阻的阻值并不恒定。它们会受机械负载和温度的影响。根据需求的不同,可以使用具有不同容差的电阻或匹配电阻对(或网络),其大部分使用薄膜技术制造并具有精确的比值稳定性。利用这些匹配的电阻网络(如LT5400四通道匹配电阻网络),可以大幅提高放大器电路的整体 CMRR。LT5400 电阻网络在整个温度范围内具有出色的匹配性,结合差分放大器电路使用则匹配性更佳,因而可确保 CMRR 比分立电阻提高两倍。

6645c1d6-e14b-11ec-ba43-dac502259ad0.jpg

图 2. 带有 LT5400 的差分放大器电路。

LT5400 提供 0.005% 的匹配精度,从而使 CMRRR达到 86 dB。然而,放大器电路的总共模抑制比 (CMRRTotal) 由电阻 CMRR和运算放大器共模抑制比 CMRROP的组合构成。对于差分放大器,可利用公式 3 计算:

66682848-e14b-11ec-ba43-dac502259ad0.jpg

例如,LT1468提供的 CMRROP典型值为 112 dB,采用 LT5400 的增益为 G = 1,其 CMRRTotal的值为 85.6 dB。

或者,可以使用集成式差分放大器,如LTC6363。这种放大器在单芯片中内置放大器和最佳匹配电阻。它几乎消除了上述所有问题,同样也可提供最大精度,其 CMRR 值达 90 dB 以上。

结论

必须根据差分放大器电路的精度要求仔细选择外部电阻电路,以便实现系统的高性能。或者,可以使用集成式差分放大器,如在单芯片中集成了匹配电阻的 LTC6363。

LT5400

A 级:0.01% 匹配准确度

B 级:0.025% 匹配准确度

卓越的匹配性能

0.2ppm/ºC 匹配温度漂移

±75V 工作电压 (±80V 绝对最大值)

8ppm/ºC 绝对电阻值温度漂移

长期稳定性:< 2ppm (在 2000 小时)

–55ºC 至 150ºC 工作温度范围

8 引脚 MSOP 封装

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电阻
    +关注

    关注

    88

    文章

    5734

    浏览量

    178556
  • 差分放大器
    +关注

    关注

    8

    文章

    513

    浏览量

    54668

原文标题:想要提高差分放大器的共模抑制比,电阻的选择是关键!

文章出处:【微信号:analog_devices,微信公众号:analog_devices】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Texas Instruments INA500差分放大器技术解析与应用指南

    Texas Instruments INA500 1.7V至5.5V差分放大器包括一个集成运算放大器和匹配电阻器,提供三种增益选项。INA500A放大器的增益选项为1,而INA500B
    的头像 发表于 09-05 13:42 696次阅读
    Texas Instruments INA500<b class='flag-5'>差分放大器</b>技术解析与应用指南

    什么是共模抑制比

    ,本文用光隔离探头介绍如何测量探头的共模抑制比:设备准备30kV放大器:HA-30K光隔离探头:PTO350配X10衰减器高频示波器:MDO7500A信号发生器:D
    的头像 发表于 06-23 09:45 972次阅读
    什么是<b class='flag-5'>共模抑制比</b>?

    INA148-Q1 汽车类、+-200V、共模电压差分放大器技术手册

    INA148-Q1是一款精密、低功耗、单位增益差分放大器,具有高共模输入电压范围。该器件由单片精密双极运算放大器和薄膜电阻网络组成。
    的头像 发表于 05-15 09:34 689次阅读
    INA148-Q1 汽车类、+-200V、共模电压<b class='flag-5'>差分放大器</b>技术手册

    电池化成、医疗 ECG 精准检测!思瑞浦推出放大器TPA1287

    聚焦模拟和数模混合聚焦高性能模拟与数模混合产品的供应商思瑞浦3PEAK(股票代码:688536)推出138dB(@G=100,Typ)的高共模抑制比、高阻抗低噪声仪表放大器TPA1287。该产品提供
    的头像 发表于 05-13 14:40 829次阅读
    电池化成、医疗 ECG 精准检测!思瑞浦推出<b class='flag-5'>放大器</b>TPA1287

    OPA207 低功耗、低噪声、高精度、双极性RRO运算放大器技术手册

    OPA207 精密运算放大器取代了业界标准的 OP-07、OP-77 和 OP–177 放大器。OPA207 的噪音更小,输出电压摆幅更宽,速度增加一倍,但静态电流是当前业界标准同类产品的一半。特性 包括超低的输入失调电压和温漂、低输入偏置电流、高
    的头像 发表于 04-18 13:53 768次阅读
    OPA207 低功耗、低噪声、高精度、双极性RRO运算<b class='flag-5'>放大器</b>技术手册

    电源抑制

    高质量的D/A转换器,要求开关电路及运算放大器所用的电源电压发生变化时,对输出的电压影响极小.通常把满量程电压变化的百分烽与电源电压变化的百分数之比称为电源抑制.电源抑制
    发表于 04-08 13:30

    ADL5561 2.9GHz超低失真射频/中频差分放大器技术手册

    ADL5561是一款专为RF和IF优化的高性能差分放大器。该放大器在宽频范围内提供2.1 nV/√Hz的低噪声以及出色的失真性能,从而使其成为驱动8-16位高速ADC的理想选择。
    的头像 发表于 03-14 16:26 925次阅读
    ADL5561 2.9GHz超低失真射频/中频<b class='flag-5'>差分放大器</b>技术手册

    AD8476低功耗、单位增益全差分放大器和ADC驱动器技术手册

    AD8476是一款功耗极低的全差分精密放大器,集成用于单位增益的增益电阻。它非常适合用作驱动低功耗、高性能ADC的单端转差分或差分转差分放大器。用户可利用内部共模反馈环路调整输出共模电压,使AD8476输出与ADC的输入相匹配。内部反馈环路也可提供出色的输出平衡,并能
    的头像 发表于 03-13 17:49 1230次阅读
    AD8476低功耗、单位增益全<b class='flag-5'>差分放大器</b>和ADC驱动器技术手册

    ISL28006:测量共模和电源抑制

    虽然电流检测放大器(如ISL28006)的数据手册以电气规格的形式展示了器件性能,但有时客户需要通过基准测试来确认电气参数。尤其重要的是共模抑制比(CMRR)和电源抑制(PSRR),
    的头像 发表于 02-21 09:49 951次阅读
    ISL28006:测量共模和电源<b class='flag-5'>抑制</b><b class='flag-5'>比</b>

    国产低噪声全差分放大器SC7516——AD8138的理想替代之选

    国产低噪声全差分放大器SC7516——AD8138的理想替代之选
    的头像 发表于 01-14 10:03 1573次阅读
    国产低噪声全<b class='flag-5'>差分放大器</b>SC7516——AD8138的理想替代之选

    低噪声全差分放大器SC7516替换AD8138应用于线路驱动器

    低噪声全差分放大器SC7516替换AD8138应用于线路驱动器
    的头像 发表于 12-25 10:13 1037次阅读
    低噪声全<b class='flag-5'>差分放大器</b>SC7516替换AD8138应用于线路驱动器

    差分放大器电参数仿真与测试方法探讨

    差分放大器电参数仿真与测试方法探讨
    的头像 发表于 12-20 18:15 576次阅读
    全<b class='flag-5'>差分放大器</b>电参数仿真与测试方法探讨

    运算放大器和普通放大器的区别

    和基本结构 运算放大器(Op-Amp): 运算放大器是一种高增益、高输入阻抗、低输出阻抗的放大器,通常由差分放大器、电压放大器、电流
    的头像 发表于 12-18 15:31 2390次阅读

    运算放大器的基本原理 运算放大器的应用实例

    运算放大器的基本原理 1. 基本结构 运算放大器通常由两个输入端(反相输入端和非反相输入端)、一个输出端以及电源端组成。内部结构包括差分放大器、增益级和输出级。 2. 差分放大器
    的头像 发表于 12-18 15:25 3047次阅读

    差分放大器SC7516替换AD8138在频谱分析仪中的应用

    差分放大器SC7516替换AD8138在频谱分析仪中的应用
    的头像 发表于 12-12 10:24 1159次阅读
    全<b class='flag-5'>差分放大器</b>SC7516替换AD8138在频谱分析仪中的应用