0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

红富士苹果叶片全钾含量高光谱预测研究

莱森光学 来源:莱森光学 作者:莱森光学 2022-02-24 10:48 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、高光谱遥感技术理论

近年来快速发展的高光谱遥感技术已经具备了高时效、光谱波段多、光谱分辨率高等优势。与一般遥感技术相比,高光谱遥感技术的成像光谱仪可以分离成几十甚至数百个很窄的波段来接收信息,每个波段宽度小于10nm,所以波段排在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光到热红外的全部电磁辐射波普范围。而且利用光谱技术对植物、矿物中的化学元素含量的估测已经得到了广泛应用。钾能调节细胞的渗透压,调节植物生长和经济用水,增强植物的抗不良因素(旱、寒、病害、盐碱、倒伏)的能力,钾还可以改善农产品品质。因此对叶片中钾含量的估测研究对实际应用具有重要意义。由于高光谱对植物中水分含量,叶绿素等含量极其敏感,故叶片中钾的含量的变化必定会对反射光谱信息产生影响,可根据叶片的光谱信息来估测叶片中钾的含量。

1.1 理论基础

1、高光谱遥感的概念高光谱遥感(Hyperspectral Romote Sensing)即高光谱分辨率遥感指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它可在电磁波的紫外、可见光、近红外、中红外以至热红外区域,获取许多非常窄且光谱连续的图像数据。2、高光谱遥感的优势高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取地物近似连续的光谱反射率曲线,与地面实测值相匹配,将实验室地物光谱分析模型应用到遥感反演过程中。2)对地表覆盖的识别能力得到极大提高。高光谱数据能够探测具有诊断性光谱吸收特征的物质,能够准确区分地表植被覆盖类型、道路的铺面材料、河流水资源等。3)地形要素分类识别方法灵活多样。影像分类既可以采用各种模式识别方法,如贝叶斯判别、决策树、神经网络、支持向量机等,又可以采用基于地物光谱数据库的光谱匹配方法。分类识别特征,可以采用光谱诊断特征,也可以进行特征选择与提取,进行监督分类和非监督分类。4)地形要素的定量或半定量分类识别成为可能。在高光谱影像中,能估计出多种地物的状态参量,提高遥感高定量分析的精度和可靠性。3、高光谱遥感的应用领域高光谱遥感在植被生态方面、农业、农作物估测、矿物勘探等领域都有重要应用。

1.2 实验材料与方法

1、样品采集

供试苹果品种为处于盛果期的红富士,在秋梢停止生长期进行样品采集,依据研究区土地利用现状图和果园分布布设采样点。选取试验区3个镇的6个果园86棵苹果树为采样对象,随机取样,并尽量涵盖不同树势的叶片。每棵苹果树按东、西、南、北4个方位,在冠层外围各取1-2片充分展开、无损、无病虫害的健康功能叶片。将采集的叶片迅速装入保鲜袋、封口、编号,放盛有冰块的保鲜箱中,尽快带回实验室。

2、测定项目

光谱测定

光谱测定采用地物光谱仪,波段值为350~2500nm,其中350~1000nm光谱采样间隔为1.4nm,光谱分辨率为3nm;1000~2500nm 光谱采样间隔为2nm,光谱分辨率为10nm。在一个能控制光照条件的暗室内进行光谱测定。测定前,对测定光谱的叶片,用脱脂棉擦拭干净。测定时,叶片单层平整置于反射率近似为零的黑色橡胶上,光谱仪视场角为25°,探头垂直向下正对待测叶片中部,距样品表面距离0.10 m;光源用光谱仪自带的50W 卤化灯,光源距样品表面距离0.50m,方位角60°。为消除外界干扰以保证精度,每片叶观测记录10个采样光谱,以其平均值作为该叶片的光谱反射值。测定过程中,及时进行标准白板校正。

钾素含量测定

将测定光谱的苹果叶片迅速放入80℃烘箱中,进行15~30min杀青处理,然后降温至60℃烘干至恒量。把烘干样品用研钵研磨至粉状,用H2SO4-H2O2消煮后,采用火焰光度法测定全钾含量。

数据处理

将测得的苹果叶片反射光谱数据,利用光谱处理软件进行处理,并通过EXCEL和SPSS软件统计分析和绘图等,进行进一步的分析。对86个样品光谱反射率求均值,得到苹果叶高光谱随波长变化曲线,分析其光谱特征。为了减小光照强度差异、背景光谱以及一起噪声对目标光谱特征的影响,我们对光谱反射率 R 进行了变换。具体变换形式如下:

①光谱的对数;

②光谱对数的一阶导数;

③光谱的倒数;

④光谱倒数的一阶导数;

⑤二阶微分光谱;

⑥光谱的一阶微分;

⑦光谱的一阶导数;

⑧钾含量与原始光谱;

并通过相关分析确定敏感波段,利用敏感波段构建特征光谱参数,建立预测模型。为评价预测值与实测值的拟合效果,选择决定系数R2进行评价。

模型的建立,优选和检验

首先,对86个苹果叶片原始光谱反射率及8种光谱变换数据与钾素含量分别进行相关分析,确定与苹果叶片钾含量相关性极显著的光谱形式;其次,用逐步回归分析方法筛选出敏感波长与光谱参数;用光谱参数建立苹果叶片钾含量估测模型;最后,对模型进行检验。在86个样本数据中,随即选取30个数据用来建立估测模型,其余31个则用于模型的检验。用决定系数对估测值与实测值之间的拟合结果进行综合研究评定,以检验模型的稳定性和适用性。

1.3 结果与分析

1、苹果叶片原始光谱反射率及其 8 种变换数据与钾素含量之间的相关分析

对苹果叶片原始光谱反射率及其8种变换数据与钾素含量进行了相关分析。结果显示,苹果叶片钾素含量与原始光谱反射率、对数、二阶微分光谱、光谱的一阶微分相关性较弱,与光谱倒数、光谱倒数的一阶导数、光谱的对数、光谱的对数的一阶导数相关性较强。并且在光谱倒数的一阶导数和光谱对数的一阶导数的相关系数中,能取得明显的极值,绝对值大于0.6,峰(谷)极值分别出现在波长417nm、487nm、973nm、1081nm、381nm、417nm、487nm、928nm、973nm、983nm、1081nm处(图1、图2)。

poYBAGIW8gaAdyWCAAQz6ujVSYk463.png

2、敏感波长的获取与估测模型的建立

对苹果叶片钾素含量与相关性较强的光谱变换数据分别进行了逐步回归分析,获取了估测苹果叶片钾素含量的敏感波长。经过多次调试,最后得到光谱对数的一阶导数,光谱倒数的一阶导数,敏感波长分别为928nm、1081nm。然后以敏感波长构建的光谱参数为自变量,分别建立了钾素含量估测模型。

pYYBAGIW8geAMhNyAAJA1rstGAw072.png

1.4 结论

苹果叶片钾素含量与原始光谱反射率对数的一阶导数的相关性最好,其相关系数绝对值最大的峰(谷)分别是928nm、973nm、983nm、1081nm波长处。通过逐步回归分析方法筛选出的敏感波长为928nm、1081nm;以928nm对数的一阶导数与 1081nm对数的一阶导数为自变量建立的估测模型具有较好的线性趋势,相关系数为 0.7127。经检测样本的检验,其拟合方程的R2为0.5070,总均方根(RMSE)为 0.00046。

110表明模型对苹果叶片钾素含量的估测具有较好的准确性,可作为钾素含量的最佳估测。

poYBAGIW8giAYSDAAAMSamdyBcw337.png

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据分析
    +关注

    关注

    2

    文章

    1508

    浏览量

    35949
  • 高光谱
    +关注

    关注

    0

    文章

    466

    浏览量

    10644
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    用于烟叶分选的光谱相机推荐什么品牌?

    、糖分、总氮含量,甚至识别霉变、杂质和不同部位叶片,从而实现自动化精准分选。 那么,针对烟叶分选这一具体工业应用,应该选择哪个品牌的光谱相机呢? 烟叶分选对
    的头像 发表于 11-28 16:33 2328次阅读
    用于烟叶分选的<b class='flag-5'>高</b><b class='flag-5'>光谱</b>相机推荐什么品牌?

    光谱成像在作物长势监测和产量预估的研究进展

    参数的非接触式、高精度监测。近年来,随着遥感技术和人工智能算法的发展,光谱成像系统 (SKY机载光谱相机+中达瑞和 云平台) 已成为作物长势监测和产量预估的重要工具。本文系统梳理该
    的头像 发表于 10-16 16:31 384次阅读
    <b class='flag-5'>高</b><b class='flag-5'>光谱</b>成像在作物长势监测和产量预估的<b class='flag-5'>研究</b>进展

    光谱成像在作物病虫害监测的研究进展

    特性会发生显著变化,例如: 叶绿素含量下降 :导致可见光波段(400-700 nm)反射率异常 细胞结构破坏 :引起近红外波段(700-1300 nm)散射特征改变 水分与糖分异常 :影响短波红外波段(1300-2500 nm)吸收峰分布 研究进展与关键技术突破 (一)
    的头像 发表于 10-16 15:53 332次阅读
    <b class='flag-5'>高</b><b class='flag-5'>光谱</b>成像在作物病虫害监测的<b class='flag-5'>研究</b>进展

    光谱成像技术在指纹提取的研究和应用

    光谱成像技术(Hyperspectral Imaging, HSI)因其在非接触式、无损检测和多波段信息获取方面的优势,成为指纹提取领域的研究热点。本文系统梳理
    的头像 发表于 09-26 17:55 1178次阅读
    <b class='flag-5'>高</b><b class='flag-5'>光谱</b>成像技术在指纹提取的<b class='flag-5'>研究</b>和应用

    什么是 VNIR 光谱成像?以及适用于哪些做什么研究

    什么是 VNIR 光谱成像? VNIR(Visible and Near-Infrared,可见光-近红外)光谱成像 是一种结合光学成像与光谱
    的头像 发表于 09-18 10:15 334次阅读
    什么是 VNIR <b class='flag-5'>高</b><b class='flag-5'>光谱</b>成像?以及适用于哪些做什么<b class='flag-5'>研究</b>?

    光谱相机让农林管理进入“光谱级”智能时代

    什么是光谱相机? 光谱相机是一种能够捕捉物体在数十甚至上百个连续窄波段上反射光谱的成像设备。与普通可见光相机不同,它能“看到”人眼不可见
    的头像 发表于 06-27 10:50 372次阅读
    <b class='flag-5'>高</b><b class='flag-5'>光谱</b>相机让农林管理进入“<b class='flag-5'>光谱</b>级”智能时代

    光谱成像相机:基于光谱成像技术的玉米种子纯度检测研究

    无损检测领域的研究热点。中达瑞和作为国内光谱成像设备的领先供应商,可实现国产替代,助力科研院校进行光谱成像领域的
    的头像 发表于 05-29 16:49 462次阅读

    地物光谱仪在作物营养监测中的应用

    作物营养状况是影响农业产量和品质的关键因素。传统的营养监测方法如土壤化验、叶片化学分析等,虽然精度,但耗时费力、空间覆盖有限。地物光谱仪的引入为农业营养监测带来了时效、无损伤、区域
    的头像 发表于 05-27 15:26 446次阅读
    地物<b class='flag-5'>光谱</b>仪在作物营养监测中的应用

    光谱相机:温室盆栽高通量植物表型光谱成像研究

    ,基因测序技术的快速发展(如基因组关联分析GWAS)远超表型数据的获取能力,形成“基因型-表型数据鸿沟”,限制了作物育种的精准性。光谱成像(400-2400nm)技术的成熟,使得非侵入性获取植物生化(如叶绿素、氮磷
    的头像 发表于 04-14 17:34 582次阅读

    光谱相机在防火材料研究与应用

    防火材料作为保障生命财产安全的重要屏障,其性能评估与研发一直是材料科学领域的关键课题。近年来,光谱成像技术以其独特优势,为防火材料的研究与应用带来了革命性的突破。本文将深入探讨
    的头像 发表于 03-31 18:08 545次阅读
    <b class='flag-5'>高</b><b class='flag-5'>光谱</b>相机在防火材料<b class='flag-5'>研究</b>与应用

    基于光谱特征参数的马铃薯块茎形成期叶片含水量定量监测模型

    采用光谱数据选择的特征光谱参数对马铃薯关键生育期叶片含水量的定量监测普适性更高。研究结果可以实时、准确地监测马铃薯
    的头像 发表于 03-24 18:03 491次阅读
    基于<b class='flag-5'>高</b><b class='flag-5'>光谱</b>特征参数的马铃薯块茎形成期<b class='flag-5'>叶片</b>含水量定量监测模型

    凝视式光谱相机:光谱成像技术与多元化应用

    随着科技的不断进步, 凝视式光谱相机 逐渐成为科学研究领域的重要工具。本文将为大家科普 凝视式光谱相机 的工作原理、技术特点及其在实际中
    的头像 发表于 03-10 16:26 835次阅读

    基于光谱深度特征的油菜叶片含量检测

    为了实现油菜叶片含量的快速无损检测,该研究采用一种基于光谱成像技术结合深度迁移学习算法的高精度检测方法,通过无土栽培的方式,利用
    的头像 发表于 02-24 18:03 635次阅读
    基于<b class='flag-5'>高</b><b class='flag-5'>光谱</b>深度特征的油菜<b class='flag-5'>叶片</b>锌<b class='flag-5'>含量</b>检测

    光谱相机的优势有哪些?

    光谱相机作为现代信息采集技术的重要工具,近年来受到了广泛关注。那么,光谱相机究竟是什么?它比传统相机有什么独特之处?本文将为你一一揭晓。 什么是
    的头像 发表于 02-21 14:54 808次阅读
    <b class='flag-5'>高</b><b class='flag-5'>光谱</b>相机的优势有哪些?

    基于光谱的辣椒叶片SPAD反演研究

    无人机光谱遥感技术和近地光谱技术在农作物的生长状态监测、分类等方面具有独特的优势,它快速、高效、便捷、监测范围广,可对植被进行连续动态监测,在快速获取大量植被表型信息的
    的头像 发表于 12-31 10:28 2287次阅读
    基于<b class='flag-5'>高</b><b class='flag-5'>光谱</b>的辣椒<b class='flag-5'>叶片</b>SPAD反演<b class='flag-5'>研究</b>