0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

计算机视觉中识别出的类别有什么用途

NVIDIA英伟达企业解决方案 来源:NVIDIA英伟达企业解决方案 作者:NVIDIA英伟达 2021-08-25 16:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

计算机视觉的应用中,“识别”只是一个相当入门的技术,相信很多人在执行深度学习推理应用中,经常产生的质疑就是“识别出的类别,有什么用途呢”?

确认每一帧图像中有多少个我们想要识别的种类,以及他们在图像中的位置,只是整个应用的第一步而已,如果缺乏“目标追踪(tracking)”的能力,就很难提供视频分析的基础功能。

在标准 OpenCV 体系里有 8 种主流的目标追踪算法,有兴趣的可以在网上搜索并自行研究。

算法的基本逻辑就是需要对视频的相邻帧进行“类别”与“位置”的比对,因此这部分的计算还是相当消耗计算资源的,也就是当视频分析软件“开启”目标追踪功能时,其识别性能必定有所下降,大家必须先有这样的认知。

DeepStream 的定位就是针对“视频分析”的应用,因此“目标追踪”是其最基本的功能之一。

在前面使用的 myNano.txt 配置文件中,只需要调整一个设定值就能开启或关闭这个追踪功能,非常简单。

DeepStream 支持 IOU、KLT 与 NVDCF 三种目标追踪算法(如下图),其中 IOU 的性能最好,在 Jetson Nano 2GB 上的总体大约能到 200FPS;NVDCF 的精确度最高,但目前性能大约只能到 56FPS;KLT 算法目前在性能与精确度的平衡比较好,总体性也能到 160FPS,因此通常都选择 KLT 追踪器做演示。

算法的细节不多做解释,请自行寻找相关技术文件学习,这里就直接进入实验的过程。还是以前一篇文章中的 myNano.txt 配置文件为主,如果不知道的话,就用 source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt 复制一份出来就可以,透过修改里面的参数,让大家体验一下 DeepStream 目标追踪的功能。

01

目标追踪功能的开关

在 myNano.txt 最下方,可以看到[tracker]的设定组,下面有个“enable=1”的参数,就是目标追踪的功能。

现在先执行一次启动追踪功能,如下图可以看到每个识别出的物件除了类别、标框之外,旁边还有个编号,这个编号会一直跟着该物件,这样就形成“追踪”的功能。

此时的识别性能如下图,总性能(8 个数字相加)大约 160FPS。

如果将[trakcer]下面改成“enable=0”,再执行看看结果如何?下图中能识别出物件的类别与标框位置,但是已经没有编号。

关闭追踪功能之后的识别性能如下图,总识别性能可以达到 250FPS 左右。

02

切换追踪器

前面说过,目前 DeepStream 5.0 支持三种追踪器,那么要如何选择呢?同样在[tracker]参数组下方,有这样的三行参数:

#ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_iou.so

#ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_nvdcf.so

ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_klt.so

前面加上“#”号的就是处于关闭的状况,请先将[tracker]切回“enable=1”的开启状态,接下来请自行加减“#”的位置以切换追踪器的选择,分别测试这三个追踪器的不同之处,包括识别性能与追踪能力。

这部分必须直接在视频中体验,因此就不截屏显示。测试结果可以感受到 IOU 追踪器的性能最好,可达到 200FPS 左右,但是同一物件的编号并不是太稳定,而 NVDCF 追踪器的编号最为稳定,但性能大概只有 IOU 的 1/4,最多只能承受 2 路视频的实时分析。

KLT 算法总体性能可达到 160FPS,可以支持到8路以内的实时识别,追踪能力也比 IOU 好不少,不过这个算法对 CPU 的占用率比较高,是这个算法的主要缺点。该如何选择需要看实际的场景与计算设备的资源而定。

03

获取追踪数据

前面打开目标追踪功能的目的,并不只是为了在显示器上看看而已,而是用这些数据做更有价值的应用,而这些数据要从什么地方得到呢?通常都需要透过 PythonC++从 DeepStream 提供的接口去获取。

这里提供一个无需了解 DeepStream 接口就能获取目标追踪数据的方法,只要我们在 myNano.txt 里面的[application]参数组,添加一条“kitti-track-output-dir=《PATH》”的路径指向就可以,这里假设要将数据存入“/home/nvidia/track”路径下,在 myNano.txt 里添加一行参数即可:

[application]

kitti-track-output-dir=/home/nvidia/track

执行“deepstream -c myNano.txt”之后,就可以看到/home/nvidia/track目录下产生非常多的文件,如下截屏:

每个文件存放“一帧”的目标追踪结果,例如我们测试的 sample_1080p_h264.mp4 视频有 48 秒,每秒有 30 帧图像,就会生成 1440 个文件。

前面 6 位数“00_000”代表视频源的编号,从“0”开始,如果有 4 路视频源就会有“00_000”~“00_003”的编号,后面 6 位则是流水号,例如这个测试视频就会生成“000000.txt”~“001440.txt”,由这两部分组合而成文件名。

这是 KITTI 格式的数据,第一栏位是该物件的类别,第二栏是该物件的“追踪编号”,后面数据所代表的意义,请自行参考 KITTI 的格式定义。

现在我们就可以依序读入这些追踪文件,或者将这些文件回传给控制中心,进行文件解析与信息提取,这样是不是很方便?相信这些内容对于开发会很有帮助。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5496

    浏览量

    109091
  • 机器视觉
    +关注

    关注

    163

    文章

    4728

    浏览量

    125008

原文标题:NVIDIA Jetson Nano 2GB 系列文章(29): DeepStream 目标追踪功能

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    使用代理式AI激活传统计算机视觉系统的三种方法

    当前的计算机视觉系统擅长于识别物理空间与流程的事件,却难以诠释场景细节及其意义,也无法推理后续可能发生的情况。
    的头像 发表于 12-01 09:44 327次阅读

    STM32计算机视觉开发套件:B-CAMS-IMX摄像头模块技术解析

    STMicroelectronics用于 STM32开发板的B-CAMS-IMX摄像头模块提供强大的硬件集,可处理多种计算机视觉场景和用例。该模块具有高分辨率500万像素IMX335LQN
    的头像 发表于 10-20 09:46 713次阅读
    STM32<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>开发套件:B-CAMS-IMX摄像头模块技术解析

    【作品合集】赛昉科技VisionFive 2单板计算机开发板测评

    【VisionFive 2单板计算机试用体验】人脸识别1——交叉编译环境搭建 作者:voidpbq【VisionFive 2单板计算机试用体验】1. 环境搭建与代码整编【VisionFive 2单板
    发表于 09-04 09:08

    易控智驾荣获计算机视觉顶会CVPR 2025认可

    近日,2025年国际计算机视觉与模式识别顶级会议(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美国田纳西州纳什维尔召开。
    的头像 发表于 07-29 16:54 981次阅读

    工业计算机的重要性

    工业计算机对某些行业至关重要。我们将在下面详细解释这些行业的工业计算机应用。1.制造与工业自动化工业级计算机非常适合制造工厂,特别是那些想要自动化装配过程的工厂。在这样的环境
    的头像 发表于 07-28 16:07 398次阅读
    工业<b class='flag-5'>计算机</b>的重要性

    自动化计算机经过加固后有什么好处?

    让我们讨论一下部署坚固的自动化计算机的一些好处。1.温度范围宽自动化计算机经过工程设计,配备了支持宽温度范围的组件,使自动化计算解决方案能够在各种不同的极端环境运行。自动化
    的头像 发表于 07-21 16:44 419次阅读
    自动化<b class='flag-5'>计算机</b>经过加固后有什么好处?

    自动化计算机的功能与用途

    工业自动化是指利用自动化计算机来控制工业环境的流程、机器人和机械,以制造产品或其部件。工业自动化的目的是提高生产率、增加灵活性,并提升制造过程的质量。工业自动化在汽车制造中体现得最为明显,其中许多
    的头像 发表于 07-15 16:32 531次阅读
    自动化<b class='flag-5'>计算机</b>的功能与<b class='flag-5'>用途</b>

    工业计算机与商用计算机的区别有哪些

    工业计算机是一种专为工厂和工业环境设计的计算系统,具有高可靠性和稳定性,能够应对恶劣环境下的自动化、制造和机器人操作。其特点包括无风扇散热技术、无电缆连接和防尘防水设计,使其在各种工业自动化场景
    的头像 发表于 07-10 16:36 516次阅读
    工业<b class='flag-5'>计算机</b>与商用<b class='flag-5'>计算机</b>的区<b class='flag-5'>别有</b>哪些

    基于LockAI视觉识别模块:手写数字识别

    手写数字识别是一种经典的模式识别和图像处理问题,旨在通过计算机自动识别用户手写的数字。本文将教会你如何使用基于RV1106的LockAI视觉
    的头像 发表于 06-30 15:44 851次阅读
    基于LockAI<b class='flag-5'>视觉</b><b class='flag-5'>识别</b>模块:手写数字<b class='flag-5'>识别</b>

    # 基于LockAI视觉识别模块:C++寻找色块

    在传统计算机视觉场景,颜色识别是目标检测和分割的重要手段之一。通过识别特定颜色的色块,可以在相对纯净的背景下快速定位目标区域。本实验提供了
    的头像 发表于 05-12 14:27 492次阅读
    # 基于LockAI<b class='flag-5'>视觉</b><b class='flag-5'>识别</b>模块:C++寻找色块

    基于LockAI视觉识别模块:C++图像的基本运算

    在图像处理,理解图像的基本操作是掌握计算机视觉技术的关键。本文章将介绍基于LockAI视觉识别模块下OpenCV
    的头像 发表于 05-06 16:20 529次阅读
    基于LockAI<b class='flag-5'>视觉</b><b class='flag-5'>识别</b>模块:C++图像的基本运算

    英飞凌边缘AI平台通过Ultralytics YOLO模型增加对计算机视觉的支持

    计算机视觉的支持,扩大了当前对音频、雷达和其他时间序列信号数据的支持范围。在增加这项支持后,该平台将能够用于开发低功耗、低内存的边缘AI视觉模型。这将给诸多应用领域的机器学习开发人员带来极大的便利,例如工厂可以借此实现对零件的
    的头像 发表于 03-11 15:11 656次阅读
    英飞凌边缘AI平台通过Ultralytics YOLO模型增加对<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的支持

    Arm KleidiCV与OpenCV集成助力移动端计算机视觉性能优化

    生成式及多模态人工智能 (AI) 工作负载的广泛增长,推动了对计算机视觉 (CV) 技术日益高涨的需求。此类技术能够解释并分析源自现实世界的视觉信息,并可应用于人脸识别、照片分类、滤镜
    的头像 发表于 02-24 10:15 876次阅读

    AR和VR计算机视觉

    ):计算机视觉引领混合现实体验增强现实(AR)和虚拟现实(VR)正在彻底改变我们与外部世界的互动方式。即便是在引人入胜的沉浸式
    的头像 发表于 02-08 14:29 2126次阅读
    AR和VR<b class='flag-5'>中</b>的<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>

    云端超级计算机使用教程

    云端超级计算机是一种基于云计算的高性能计算服务,它将大量计算资源和存储资源集中在一起,通过网络向用户提供按需的计算服务。下面,AI部落小编为
    的头像 发表于 12-17 10:19 944次阅读