0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何看待业务数据分析的?如何理解的?

数据分析与开发 来源:木木自由 作者:红星 2021-06-23 18:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1、接下来,我们正式开始分享,先来想一个问题:如果我说,“这次分享,我PPT都是随随便便做的,前后也就不过三十分钟吧,内容呢也是想到哪写到哪,大家就随便看看就好了。这次准备分享的过程,是不是随意?”

请问,我说的话里面,有没有问题?为什么?大家也可能看到了,我的ppt有50多页,按每2分钟做一个PPT,那么50多页的PPT也是需要100分钟,不可能前后不超过30分钟,所以,我想表达的是需要有基本的常识!

当我们做分析时有如下要点: √有一个基本的判断 √找到相应的数据支撑 √用数据来支持你的判断,或者推翻你的判断 √有必要的话,还要做一个报告,进行展示√有必要的话,跟我反馈,或者给我建议,或者与我进一步沟通汇√总所有的数据和结论,进行总结(新的判断)√形成闭环 当我们了解了做分析时,需要注意的要点时,我们心中基本就有一个业务数据分析简要的流程:拿到数据 → 分析数据→ 得出结论。

2、那么,问题来了:(拿到数据 → 分析数据→得出结论)这个流程有没有问题?是不是大家都觉得其实没有问题,但是又总感觉缺了点什么,缺了什么呢?不清楚。那不妨我们可以来做一下模拟演练!模拟演练和复盘其实是一回事,都是对实际场景的一种复现。

3、拿到数据:从哪里拿?什么时候拿?

所以这里可以分解出,拿到数据有这么几部分:我们需要一个数据库(搭建框架),然后我们在数据库里面进行提取数据。

拿到数据可分为搭建框架、提取数据。

4、分析数据:同样的道理,这一环,能怎么分解呢?

拿到数据后,不一定直接管用,所以要对脏数据做数据预处理,预处理后拿到了干净的数据,开始分析,这里一般根据分析的目的,会区分为几种分析思路:描述性分析、预测性分析、验证性分析·····(这里就不一一暂不展开)

复杂的分析模型,需要对数据进行建模,所以这一环叫数据建模,建模完成后,有一个大概的结论了。

你会想,这个结论会不会有问题呢?所以,要想一想,数据分析过程中会不会有一些错误的产生,这一步叫做数据验证,通过验证,数据没问题,结论应该也还OK。

那么,分析数据这一环应该可以结束了。分析数据可以分为:数据预处理、数据建模、数据验证。

5、得出结论:分析完数据,之后我们就需要向上做汇报了。

要怎么才能让汇报对象接受自己的分析结论呢?这一步叫数据展现。

我们展现的内容可能有很多内容,这是就需要要写报告。

可作报告可能还不够,此时我们还要做演讲,让别人清楚的了解报告的内容。

那么,得出结论可以分为数据展现、撰写报告、报告演讲。

6、现在,数据展现了,报告做好了,演讲说完了,听的人也接受自己的观点了,下一步是啥呢?分析新的问题?还是继续追踪原来的问题?这里就是闭环了。

所以,比较完整的流程,是这样的:

搭建数据库--数据提取--数据处理--数据分析--数据展现--撰写报告--报告演讲--闭环

但是,大家有没有遇到一种情况,就是在你汇报的时候,人家问你,不对不对,我要你分析的问题不是这个问题,你回去重新搞吧。你会不会原地爆炸?你会想问题到底出在哪里了呢?

对了,是分析问题的确认。如果没有确认清楚,就开始吭哧吭哧的干,可能最后还得落到一个前功尽弃的结果,所以,在数据分析所有环节之前,应该加上一个:明确问题。

避免给自己埋坑,因此,比较完整的流程,应该是这样的:

明确问题--搭建数据库--数据提取--数据处理--数据分析--数据展现--撰写报告--报告演讲--闭环

7、现在大家重新回顾一下,我们是如何从三个环节的分析流程,演变成九个环节的分析流程的,值得注意的是,我这里说的是“演变”。

那么,如果我们的流程,可以从三个演变成九个,那么可不可以从九个,演变成更多?答案是完全可以!

例如,第一个环节,明确问题,这个地方,就可以这样演变,问题是谁的问题?是直接领导安排的问题,还是隔壁部门求助的问题,问题的跨度是大是小?是可以在短时间内解决的,还是需要好几周才能搞定,问题涉及的部门是多还是少?是否需要涉及跨部门沟通?需不需要申请额外的权限?等等等等

这里面涉及到两个重要的分析方法,我们等会会讲,一个是5W2H,另一个是逻辑树。对刚才明确问题环节中演变的思路,其实就是5W2H;刚才从三个分析节点演变成九个分析节点的思路,其实就是逻辑树。具体我们后面再讲。

好了,我们思路讲完了,该讲讲工具了。作为一个专业的数据人,我们需要使用哪些工具?又应该使用到什么程度才可以呢?

8、在开始之前,我们可以思考一个问题:“光学会了工具,就可以做好数据分析了吗?”。

要做好数据分析,不仅要学会工具的使用(硬技能),还要学会数据分析思维,其中就包括常用的数据分析模型或方法(软技能)。

明确问题环节中,还可以延伸出更具体的情况,例如问题是谁的问题?问题的跨度是大是小?等等,其实就是5W2H分析方法。从原本三个分析节点演变成九个分析节点的思路,其实就是逻辑树分析方法。

那么,我们现在来了解三个好玩的分析模型:

5W2H分析方法

逻辑树方法

对比分析方法

9、逻辑树方法要解决的问题是,拆解和演变。我们来看一个“马斯克造火箭”的案例,怎么把成本从100亿美元降到20万美元?

马斯克,特斯拉电动车公司的老板,他有一个火星殖民计划。其中一个最大的问题在于成本。根据保守预估,将乘客用火箭送到火星上去,再送回来,成本大概一个人100亿美元,马斯克希望把去一次活性的成本,从100亿美元,降到20万美元,相当于原来的0.002%。这是如何做到的呢?

我们来看一个“芝加哥有多少钢琴师?”的案例,这一类估算的问题,又称为“费米问题”,例如:北京有多少量特斯拉汽车?某胡同口的煎饼摊一年能卖出多少个煎饼?深圳有多少个产品经理?一辆公交车里能装多少个乒乓球?等等。

通过以上应用案例,逻辑树模型可以比喻天下大事必作于细,天下难事必成于易!

•在没有分析思路的时候,拆解也许是个好办法。还记得微积分里面的内容,就是将一条连续的线进行无穷小的切分,使得原本无法直接计算的部分变得可以计算了,这就是拆解的魅力。

•费米问题可以考察一个人有是什么样的思维方式。公司招聘中,需要的是能把事情做成、有严密逻辑推理和分析能力的人,而严谨的推理能力,需要经过长期的后天训练,才有可能学好并掌握到位。

思考:业务数据分析与商业数据分析的区别在哪里?

10、对比分析方法要解决的问题是,通过锚点形成分析结论,还可以通过设计锚点,来影响消费者心理,提升业务!

通过以上应用案例,对比模型在数据分析中应用非常广泛,需重点掌握!

• 同比与环比,实质上是关于时间的对比

• 自己产品水平与市场平均水平的对比,则是竞品分析

• 设置对照组的方法,则是经典的A/B测试

• 假定结论后验证正误的方法,则是假设检验

• ……

• 还有许许多多分析的分析模型,都有对比的味道

• 对比的两个重要因素:参考系、结论。

责任编辑:lq6

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7315

    浏览量

    94006

原文标题:聊聊业务数据分析那些事儿

文章出处:【微信号:DBDevs,微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    经营数据分析可以通过哪些方式

    在数聚股份看来,提起经营数据分析,大家往往会联想到一些密密麻麻的数字表格,或是高级的数据建模手法,再或是华丽的数据报表。其实,“ 分析 ”本身是每个人都具备的能力,对于
    的头像 发表于 12-05 16:31 382次阅读

    广立微DE-G零断档重构智能数据分析

    近日,数据分析领域被一则消息推上风口浪尖:一家老牌软件巨头将撤出中国。在此背景下,其旗下以灵活著称的数据分析软件,在中国市场的未来将面临极大的不确定性。
    的头像 发表于 11-07 10:39 467次阅读

    【产品介绍】Altair RapidMiner数据分析与人工智能平台

    AltairRapidMiner赋能组织解锁数据洞察,运用数据分析和先进的人工智能自动化,提供可扩展的面向未来的解决方案。Altair数据分析和人工智能平台包括数据准备、
    的头像 发表于 09-18 17:56 667次阅读
    【产品介绍】Altair RapidMiner<b class='flag-5'>数据分析</b>与人工智能平台

    电磁兼容与电磁干扰在电磁兼容性大数据分析中的智能管理系统

    电磁兼容与电磁干扰在电磁兼容性大数据分析中的智能管理系统
    的头像 发表于 09-17 14:42 600次阅读
    电磁兼容与电磁干扰在电磁兼容性大<b class='flag-5'>数据分析</b>中的智能管理系统

    普迪飞 Exensio®数据分析平台 | Test Operations解锁半导体测试新纪元

    TestOperations是Exensio数据分析平台的四个主要模块之一。T-Ops模块旨在帮助集成器件制造商(IDM)、无晶圆厂半导体公司(Fabless)和外包半导体(产品)封测厂(OSAT
    的头像 发表于 08-19 13:53 852次阅读
    普迪飞 Exensio®<b class='flag-5'>数据分析</b>平台 | Test Operations解锁半导体测试新纪元

    如何通过数据分析识别设备故障模式?

    通过数据分析识别设备故障模式,本质是从声振温等多维数据中提取故障特征,建立 “数据特征 - 故障类型” 的映射关系,核心可通过特征提取、模式匹配、趋势分析三步实现,精准定位故障根源与发
    的头像 发表于 08-19 11:14 548次阅读
    如何通过<b class='flag-5'>数据分析</b>识别设备故障模式?

    构建自定义电商数据分析API

      在电商业务中,数据是驱动决策的核心。随着数据量的增长,企业需要实时、灵活的分析工具来监控销售、用户行为和库存等指标。一个自定义电商数据分析
    的头像 发表于 07-17 14:44 411次阅读
    构建自定义电商<b class='flag-5'>数据分析</b>API

    AI数据分析仪设计原理图:RapidIO信号接入 平板AI数据分析

    AI数据分析仪, 平板数据分析仪, 数据分析仪, AI边缘计算, 高带宽数据输入
    的头像 发表于 07-17 09:20 505次阅读
    AI<b class='flag-5'>数据分析</b>仪设计原理图:RapidIO信号接入 平板AI<b class='flag-5'>数据分析</b>仪

    如何使用协议分析仪进行数据分析与可视化

    使用协议分析仪进行数据分析与可视化,需结合数据捕获、协议解码、统计分析及可视化工具,将原始数据转化为可解读的图表和报告。以下是详细步骤及关键
    发表于 07-16 14:16

    电力系统数据分析技术

    随着智能电网技术的发展和大数据时代的到来,电力系统数据分析技术已成为电力行业不可或缺的一部分。这些技术能够帮助电力公司更好地理解电网的运行状态,预测电力需求,优化电力资源分配,提高电网的稳定性
    的头像 发表于 01-18 09:46 1240次阅读

    智能焊接数据分析设备提升工业效率与精度

    随着科技的不断进步,智能制造已经成为推动工业4.0发展的关键力量。在众多的智能制造技术中,智能焊接数据分析设备因其在提高生产效率和焊接质量方面的显著效果而受到广泛关注。本文将探讨智能焊接数据分析设备
    的头像 发表于 01-15 14:11 680次阅读

    智能焊接数据分析设备提升制造精度与效率

    不稳定、生产效率低等问题。而智能焊接数据分析设备的应用,则为解决这些问题提供了新的思路和技术手段。本文将探讨智能焊接数据分析设备如何通过数据采集、分析及应用,提升焊接制?
    的头像 发表于 01-14 09:36 772次阅读

    ADC12D1800RF使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?

    请问利用ADC12D1800RF参考电路设计,对比于数据手册,使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?
    发表于 01-02 07:14

    OTDR测试数据分析技巧

    原理 OTDR通过发射一个光脉冲进入光纤,并测量反射回来的光信号强度,以此来确定光纤的损耗和长度。OTDR的测试结果通常以曲线图的形式展示,横轴表示距离,纵轴表示光功率的负对数(dB)。 数据分析技巧 1. 理解OTDR曲线 曲线斜率 :OTDR曲线的斜率
    的头像 发表于 12-31 09:12 3542次阅读

    Mathematica 在数据分析中的应用

    数据分析是现代科学研究和商业决策中不可或缺的一部分。随着数据量的爆炸性增长,对数据分析工具的需求也在不断增加。Mathematica,作为一种强大的计算软件,以其独特的符号计算能力和广泛的内置函数库
    的头像 发表于 12-26 15:41 1095次阅读