0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一文带你深入了解量子计算

ss 来源:电子工程专辑 作者:Nvidia 2021-04-15 15:04 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

量子计算使用亚原子粒子的物理学领域来执行复杂的并行计算,从而取代了当今计算机系统中更简单的晶体管。量子计算机虽然仍处于起步阶段,但正在影响已在传统计算机上运行的新一代模拟技术,量子计算机现在可借助 NVIDIA cuQuantum SDK 进行加速。

在 Steve Jobs 发布一台可以放入口袋的计算机的 27 年前,物理学家 Paul Benioff 发表了一篇论文,表明理论上可以构建一个更小更强大的系统——一个量子计算机。

Benioff 于 1980 年描述的概念是利用亚原子物理学命名,这个概念依然在驱动着今天的研究,包括努力创造下一个计算领域大事件:一个可以在某些方面让电脑看起来像算盘的古朴的系统。

诺贝尔物理学奖得主 Richard Feynman 通过引人入胜的演讲,为广大听众带来了物理学,他帮助建立了这个领域,勾勒出此类系统如何比传统计算机更有效地模拟离奇的量子现象。

量子计算是什么?

量子计算使用亚原子粒子的物理学领域来执行复杂的并行计算,从而取代了当今计算机系统中更简单的晶体管。

量子计算机使用量子比特计算,计算单元可以打开,关闭或之间的任何值,而不是传统计算机中的字符,要么打开,要么关闭,要么是 1,要么是 0。量子比特居于中间态的能力(称为“态叠加”),这为计算方程增加了强大的功能,使量子计算机在某种数学运算中更胜一筹。

量子计算机的作用

量子计算机可以通过量子比特进行计算,这种计算过程需要耗费传统计算机无限长的时间,有时甚至根本无法完成。

例如,如今的计算机使用 8 位表示介于 0 到 255 之间的任何数字。得益于态叠加原理,量子计算机可以使用八个量子比特同时表示 0 到 255 之间的每个数字。

这是一项与计算中的并行性类似的功能:所有可能性都是一次性计算,而非按顺序计算,从而大幅增加速度。

因此,经典计算机每次执行一个长除法计算以分解一个庞大的数字,而量子计算机却可以仅通过一个步骤获得答案。砰!

这意味着量子计算机可以重塑整个领域,例如密码学,这些领域均基于对当今不可能处理的庞大数据进行分解。

微型模拟的一大作用

这可能只是个开始。一些专家认为,量子计算机将突破目前阻碍化学、材料科学以及任何涉及量子力学纳米级大小的世界模拟的极限。

量子计算机甚至可以帮助工程师对他们在当今最小的晶体管中开始发现的量子效应进行更精细的量子效果模拟,从而延长半导体的使用寿命。

事实上,专家表示量子计算机最终不会取代经典计算机,它们将相互补充。有些人预测,量子计算机将用作加速器,就像 GPU 加速当今的计算机一样。

量子计算是如何工作的?

不要指望用从当地电子商店的打折箱里回收的零件来搭建自己的量子计算机,像自己动手组装一台个人电脑一样。

目前,少数运行中的系统通常需要冷藏,以在绝对零度以上一点创造工作环境。他们需要这种寒冷的计算环境来处理为这些系统提供动力的脆弱的量子态。

要说构建量子计算机有多难,一个原型是在两个激光器之间悬浮一个原子以创建一个量子比特。您可以在家里的工作室试试!

量子计算创造了纳米级别非常强大却有着致命弱点的东西-量子纠缠,那是当一个量子态中存在两个或更多的量子比特的情况,这种情况有时由波长仅一毫米的电磁波来测量。

如果波的能量稍微大一些就会失去量子纠缠或叠加态,或者两者同时失去。结果就会出现一种叫做量子退相干的噪音状态,在量子计算中等同于电脑蓝屏死机。

量子计算机现在的状态如何?

阿里巴巴、Google、Honeywell、IBM 、IonQ和Xanadu等少数几家公司都运营着早期几代量子计算机。

如今,他们提供了数十个量子比特。但噪音可能较高,导致它们有时不稳定。。如要可靠地解决实际问题,系统需要数万或数十万个量子比特。

专家认为,要进入量子计算机真正有用的高保真时代,还得需要几十年。

o4YBAGB35sOAPeY4AADnx55nyjM368.png

量子计算机正慢慢向商业用途发展。(来源:Lieven Vandersypen 在 ISSCC 2017 上的演讲。)

关于何时达到所谓量子计算霸权(量子计算机执行经典计算机无法执行的任务的时间)的预测是业界热烈讨论的问题。

加速量子电路模拟

好消息是 AI机器学习领域聚焦于 GPU 等加速器,这些加速器可以执行量子计算机用量子比特计算的许多类型的运算。

现在,经典计算机已经找到了使用 GPU 实现量子模拟的方法。例如,NVIDIA 在我们的内部 AI 超级计算机 Selene上进行前沿的量子模拟。

NVIDIA 在 GTC 主题演讲上宣布推出 cuQuantum SDK,目的是加速在 GPU 上运行的量子电路模拟。早期研究表明,cuQuantum 能够提供许多量级的加速。

SDK 采用一种不可知论的方式为用户提供了可以选择的最适合其方法的工具。例如,态向量可提供高保真结果,但其内存需求会随着量子比特数量的增大呈指数级增长。

这会在如今最大的传统超级计算机创造约 50个量子比特的实际限制。不过,我们已经(见下文)看到使用 cuQuantum 加速使用这种方法的量子电路模拟的显著结果。

o4YBAGB35uiAfqhqAAA_LEXo-m4397.png

态向量:1,000 个电路,36 个量子比特,深度 m=10,复杂度 64 | CPU:双 AMD EPYC 7742 上的 Qiskit | GPU:DGX A100 上的 Qgate

来自 Jülich 超级计算中心的研究人员将在 GTC session E31941深入讲解态向量法的工作(免费注册)。

一个较新的方法是张量网络模拟,它使用更少的内存和更多的计算来执行类似的工作。

利用这种方法,NVIDIA 和加州理工学院使用运行在 NVIDIA A100 Tensor Core GPU 上的 cuQuantum 完成了对最先进的量子电路模拟器的加速。在Selene 上,这个实验在 9.3 分钟便从 Google Sycamore 电路的全电路模拟中生成了一个样本,而18 个月前,专家认为需要使用数百万个 CPU 核心花费数天时间才能完成这项任务。

o4YBAGB35wWAACXnAAA3pKLc99Y121.png

网络 - 53 个量子比特,深度 m=20 |CPU:双 AMD EPYC 7742 上的 Quimb库 | GPU:DGX-A100 上的 Quimb库

加州理工学院的研究科学家 Johnnie Gray 说:“通过使用 Cotengra/Quimb 包、NVIDIA新发布的 cuQuantum SDK 和 Selene 超级计算机,我们在10 分钟内生成了 Sycamore 量子电路样本,深度m=20”。

加州理工学院化学教授 Garnet Chan 表示:“这为量子电路模拟性能设定了基准,并将有助于提升我们验证量子电路行为的能力,从而推动量子计算领域的发展。”Garnet Chan 教授的实验室是这项工作的主办方。

NVIDIA 预计,cuQuantum 的性能提升和易用性将使其成为研究前沿每个量子计算框架和模拟器的基础元素。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IBM
    IBM
    +关注

    关注

    3

    文章

    1854

    浏览量

    76789
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5102

    浏览量

    134487
  • SDK
    SDK
    +关注

    关注

    3

    文章

    1094

    浏览量

    51218
  • 量子计算
    +关注

    关注

    4

    文章

    1163

    浏览量

    36321
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    带你了解海凌科毫米波雷达

    什么是毫米波雷达?毫米波雷达有什么特点?毫米波雷达有什么作用?海凌科有哪些系列毫米波雷达?带你了解!毫米波的定义毫米波是指频率在30GHz至300GHz之间、波长为1~10毫米的电
    的头像 发表于 08-11 12:04 1297次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>带你</b><b class='flag-5'>了解</b>海凌科毫米波雷达

    如何为不同的电机选择合适的驱动芯片?纳芯微带你深入了解

    在现代生活中,电机广泛使用在家电产品、汽车电子、工业控制等众多应用领域,每个电机的运转都离不开合适的驱动芯片。纳芯微提供丰富的电机驱动产品选择,本期技术分享将重点介绍常见电机种类与感性负载应用,帮助大家更深入了解如何选择合适的电机驱动芯片。
    的头像 发表于 07-17 14:00 1611次阅读
    如何为不同的电机选择合适的驱动芯片?纳芯微<b class='flag-5'>带你</b><b class='flag-5'>深入了解</b>!

    带你了解电源测试系统的功能!

    在当今电子与电力技术飞速发展的时代,各类电子设备、电力系统以及新能源相关产品的研发、生产和维护过程中,电源测试系统扮演着至关重要的角色。本文将带你了解源仪电子的电源测试系统的功能。
    的头像 发表于 07-02 09:10 645次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>带你</b><b class='flag-5'>了解</b>电源测试系统的功能!

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    电子发烧友网报道(/李弯弯)量子计算种基于量子力学原理的新型计算模式,其核心在于利用
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>计算</b>最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    支持500 +量子比特!国产第4代量子计算测控系统发布

    电子发烧友网报道( / 吴子鹏)日前,我国第四代自主量子计算测控系统 “本源天机 4.0” 正式发布,这成果标志着我国量子
    的头像 发表于 05-12 09:28 5207次阅读

    带你了解工业计算机尺寸

    项艰巨的任务。本博客将指导您了解关键的工业计算机尺寸、使用案例。关键工业计算机外形要素及其使用案例、工业微型PC尺寸范围:宽度:100毫
    的头像 发表于 04-24 13:35 799次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>带你</b><b class='flag-5'>了解</b>工业<b class='flag-5'>计算</b>机尺寸

    基于玻色量子相干光量子计算机的混合量子经典计算架构

    近日,北京玻色量子科技有限公司(以下简称“玻色量子”)与北京师范大学、中国移动研究院组成的联合研究团队提出种基于相干光量子计算机的混合
    的头像 发表于 03-10 15:43 951次阅读
    基于玻色<b class='flag-5'>量子</b>相干光<b class='flag-5'>量子</b><b class='flag-5'>计算</b>机的混合<b class='flag-5'>量子</b>经典<b class='flag-5'>计算</b>架构

    带你深入了解高光谱相机介绍背后所反馈的信息

    才能看懂的。 其实我们可以拆解出来,然后去对应参数指标,很多时候都需要我们进步转化成我们更好理解的词。例如具备超高成像速度,其实背后表达的是相机的帧频高,也就是相机每秒能够捕获并显示的图像帧数,单位为 帧
    的头像 发表于 02-28 10:34 592次阅读

    深入了解U8g2与LVGL图形库

    在单片机开发领域,图形显示功能变得越来越重要。无论是工业控制界面、智能家居设备,还是手持仪器仪表,都需要个高效且易用的图形库来实现丰富的可视化效果。U8g2 和 LVGL 就是其中两款备受关注的图形库,它们各有特点,适用于不同的应用场景。今天,我们就来深入了解这两个图形
    的头像 发表于 02-13 11:01 3533次阅读

    广州市领导莅临玻色量子考察调研

    ”),实地考察并深入了解玻色量子作为量子计算产业链长企业在实用化量子计算领域的创新实践与卓越成果
    的头像 发表于 02-13 10:40 1438次阅读

    软银与Quantinuum携手,共推量子计算实际应用

    代技术的革新。 这合作恰逢2025年国际量子科技年(IYQ),为双方的合作注入了更多的期待与活力。通过融合人工智能与量子
    的头像 发表于 02-08 09:59 780次阅读

    看懂】什么是量子计算

    如何工作?它为什么能够解决传统计算机无法应对的挑战?在这篇文章中,我们将深入探讨量子计算的本质、原理、实现方式以及应用前景,帮助您全面了解
    的头像 发表于 01-02 14:08 2174次阅读
    【<b class='flag-5'>一</b><b class='flag-5'>文</b>看懂】什么是<b class='flag-5'>量子</b><b class='flag-5'>计算</b>?

    带你了解arm主板

    当您听到“ARM主板”词时,您可能会想知道它与大多数个人计算机中使用的典型x86主板有何不同。事实是,ARM主板在从智能手机和平板电脑到服务器和嵌入式系统等各种应用中越来越受欢迎。但是什么让它们
    的头像 发表于 01-02 10:51 976次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>带你</b><b class='flag-5'>了解</b>arm主板

    如何为不同的电机选择合适的驱动芯片?纳芯微带你深入了解

    在现代生活中,电机广泛使用在家电产品、汽车电子、工业控制等众多应用领域,每个电机的运转都离不开合适的驱动芯片。纳芯微提供丰富的电机驱动产品选择,本期技术分享将重点介绍常见电机种类与感性负载应用,帮助大家更深入了解如何选择合适的电机驱动芯片。
    的头像 发表于 12-23 09:58 1789次阅读
    如何为不同的电机选择合适的驱动芯片?纳芯微<b class='flag-5'>带你</b><b class='flag-5'>深入了解</b>!

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 、基本概念 量子通信 :是利用
    的头像 发表于 12-19 15:53 2169次阅读