0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于训练神经网络的37个小建议!

电子工程师 来源: AI公园 作者:Slav Ivanov ronghuai 2021-04-08 09:58 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

这个网络在过去12个小时中一直在进行训练。一切看起来都很好:梯度在流动,损失在降低。但是接下来的预测结果是:所有都是0,所有都是背景,没有检测到任何东西。“我做错了什么?”—我问我的电脑,电脑没睬我。

你从哪里开始检查你的模型是否正在输出垃圾(例如预测所有输出的平均值,或者它的准确性非常差)?

由于一些原因,网络可能不会进行训练。在许多调试的过程中,我经常发现自己在执行相同的检查。我把我的经验和最好的想法整理在这个方便的列表里。我希望它们对你也有用。

如何使用这个指南?

很多事情都可能出错。但其中一些更有可能出现问题。我通常以这张简短的清单作为紧急第一反应:

从一个已知对这类数据有效的简单模型开始(例如,图像的VGG)。如果可能的话,使用标准的损失。关闭所有花哨的功能,例如正则化和数据扩充。如果对模型进行finetune,请仔细检查预处理,因为预处理应该与原始模型的训练相同。验证输入数据是否正确。

从一个很小的数据集(2-20个样本)开始。对其进行过拟合,并逐渐添加更多数据。

开始逐步添加所有遗漏的部分:增强/正则化,自定义损失函数,尝试更复杂的模型。

如果上面的步骤没有什么用,那么就从下面的列表开始,逐一验证。

一 . 数据集的问题

1. 检查你的输入数据

检查你正在向网络提供的输入数据是否有意义。例如,我不止一次地搞混了图像的宽度和高度。有时,我会不小心把输入全部搞成了0。或者我会反复的使用相同batch。因此,打印/显示两个batch的输入和目标输出,并确保它们是正确的。

2. 尝试随机的输入

尝试传递随机数而不是实际数据,看看错误的现象是否相同。如果是的话,这是一个确定的信号,表明你的网络在某个时候正在把数据变成垃圾。试着一层一层地调试看看哪里出错了。

3. 检查你的数据加载

你的数据可能没有问题,但是将输入传递到网络的代码可能会有问题。在任何操作之前打印第一层的输入并检查它。

4. 确保输入连接到了输出

检查一些输入样本的标签是否正确。还要确保对输入样本的变换对输出标签的作用是相同的。

5. 输入和输出之间的关系是不是太随机了?

也许输入和输出之间关系的非随机部分与随机部分相比太小了(有人可能会说股票价格是这样的)。也就是说,输入与输出的关系并不充分。由于这取决于数据的性质,因此没有一种通用的方法来检测这一点。

6. 数据集中是否有太多的噪声?

有一次,当我从一个食品网站上抓取图像数据集时,这种情况发生在我身上。有太多不好的标签,网络无法学习。手动检查一些输入样本,看看标签是不是正确。

噪声的截止点有待讨论,因为本文在使用50%损坏标签的MNIST上获得了超过50%的准确性。

7. 打乱数据集

如果你的数据集没有被打乱,并且有一个特定的顺序(按标签排序),这可能会对学习产生负面的影响。打乱你的数据集,以避免这种情况。确保你在进行打乱的时候,是把输入和标签一起打乱的。

8. 减少类别的不均衡

每一个类别B的图像就有1000个类别A的图像?你可能需要平衡损失函数或尝试其他类别不平衡的方法。

9. 你有足够的训练样本吗?

如果你正在从头开始训练一个网络,你可能需要大量的数据。对于图像分类,人们说每个类需要1000个或更多的图像。

10. 确保你的batch里不只包含同一个标签

这可能发生在排过序的数据集中(即前10k个样本包含相同的类)。通过打乱数据集很容易修复。

11. 减少batch size

这篇文章指出大的batch size会降低模型的泛化能力。

附加1. 使用标准的数据集(如mnist, cifar10 )

在测试新网络架构或编写新代码时,首先使用标准数据集,而不是你自己的数据。 这是因为这些数据集有很多参考结果,而且它们被证明是“可解的”。 不会出现标签噪声、训练/测试分布差异、数据集难度过大等问题。

II . 数据归一化/增强

12. 特征标准化

你是否标准化了你的输入使其均值和单位方差为零?

13. 你是不是用了太多的数据增强?

增强具有规律性的效果。太多的这些与其他形式的正则化(权值的L2,dropout等等)结合在一起会导致网络欠拟合。

14. 检查你的预训练模型的预处理

如果你使用的是预训练模型,请确保你使用的归一化和预处理与训练时的模型相同。例如,图像像素应该在[0,1]、[- 1,1]还是[0,255]范围内?

15. 检查训练/验证/测试集的预处理

CS231n指出了一个常见的陷阱:

“……任何预处理统计数据(例如数据平均值)必须仅对训练数据进行计算,然后应用于验证/测试数据。” 例如,计算平均值并从整个数据集中的每幅图像中减去它,然后将数据分割为train/val/test分割是错误的。"

同时,检查每个样本或batch的预处理的不同之处。

III . 实现中的问题

16.尝试解决这个问题的更简单的版本的问题

这将有助于找到问题所在。例如,如果目标输出是物体的类别和坐标,请尝试只预测物体的类别。

17.看看“随机”时候的正确的损失

再次来自优秀的CS231n:使用小参数进行初始化,没有正则化。例如,如果我们有10个类,在随机的情况下意味着我们将有10%的时候会得到正确的类,Softmax损失是正确类的概率的负对数,因此:-ln(0.1) = 2.302.

在此之后,试着增加正则化强度,这会增加损失。

18. 检查你的损失函数

如果你实现了自己的loss函数,那么检查它的bug并添加单元测试。通常,我自己写的损失可能是不正确的,并以一种微妙的方式损害了网络的性能。

19. 验证损失的输入

如果你使用的是框架提供的loss函数,请确保你传递给它的是它所期望的。例如,在PyTorch中,我会混淆NLLLoss和CrossEntropyLoss,因为前者需要softmax输入,而后者不需要。

20. 调整损失的权重

如果你的损失由几个较小的损失函数组成,请确保它们相对于每个损失函数的大小是正确的。这可能涉及测试不同的损失权重组合。

21. 使用其他的度量方法进行监控

有时候,损失并不能很好地预测你的网络是否训练的好。如果可以,使用其他指标,如准确性。

22. 测试所有的自定义的层

你自己实现了网络中的一些层吗?反复检查以确保它们按照预期工作。

23. 检查“冻结”的层和变量

检查你是否无意中禁用了一些层/变量的梯度的更新。

24. 增加网络的大小

也许你的网络的表达能力不足以得到目标函数。尝试在全连接的层中添加更多的层或更多的隐藏单元。

25. 检查隐藏维度的错误

如果你的输入看起来像(k, H, W) =(64, 64, 64)那么很容易忽略与错误维度相关的错误。对输入维度使用奇怪的数字(例如,每个维度使用不同的素数),并检查它们如何在网络中传播。

26. 梯度检查

如果你手动实现梯度下降,检查梯度,确保你的反向传播工作正常。

IV. 训练问题

27. 处理小数据集

过拟合数据的一个子集,并确保它能工作。例如,用一两个样本来训练,看看你的网络是否能学会区分它们。再继续使用每个类的更多样本。

28. 检查权值初始化

如果不确定的话,使用Xavier或He初始化。另外,初始化可能会导致错误的局部最小值,所以尝试不同的初始化,看看是否有帮助。

29. 改变你的超参数

也许你使用了一组特别糟糕的超参数。如果可行,尝试网格搜索。

30. 减少正则化

过多的正则化会导致网络严重欠拟合。减少正规化,如dropout、、权重/偏置L2正规化等。在优秀的“Practical Deep Learning for coders”课程中,Jeremy Howard建议首先摆脱欠拟合。这意味着你需要对训练数据进行充分的过拟合,然后再解决过拟合问题。

31. 多给点时间

也许你的网络需要更多的时间来训练,才能开始做出有意义的预测。如果你的损失在稳步减少,那就让它继续训练吧。

32. 从训练模式切换到测试模式

有些框架具有Batch Norm、drop等层,在训练和测试期间的行为有所不同。切换到适当的模式可能有助于你的网络进行正确的预测。

33. 训练可视化

监控每一层的激活值、权重和更新。确保它们大小匹配。例如,参数更新的大小(权重和偏差)应该是1-e3。

考虑一个可视化库,比如Tensorboard和Crayon。必要时,你还可以打印权重/偏置/激活值。

寻找平均值比0大得多的层激活。尝试 Batch Norm或ELUs。

Deeplearning4j指出在权重和偏差直方图中应该能看到:
对于权值,这些直方图在一段时间后应该有一个近似的高斯分布。 对于偏置,这些直方图通常从0开始,通常以近似高斯分布结束(LSTM是一个例外)。 注意那些发散到+/-∞的参数。留意那些变得很大的偏置。 如果类的分布非常不平衡,这种情况有时会发生在分类的输出层。

检查层的更新,他们应该是一个高斯分布。

34. 尝试不同的优化器

你选择的优化器不应该会导致你的网络不训练,除非你选择了特别糟糕的超参数。然而,对于一个任务,适当的优化器可以帮助在最短的时间内获得最多的训练。你正在使用的算法的论文中应该会指定优化器。如果不是,我倾向于使用Adam或使用动量的SGD。

查看Sebastian Ruder的excellent post了解更多关于梯度下降优化器的信息。

35. 梯度爆炸/消失

检查层的更新,因为很大的值可以导致梯度爆炸。梯度剪裁可能会有所帮助。

检查层的激活。来自Deeplearning4j的是一条很好的指导方针:“一个好的激活值的标准差在0.5到2.0之间。显着地超出这个范围可能意味着激活值的消失或爆炸”

36. 增大/降低学习率

较低的学习率会导致模型非常缓慢地收敛。

高学习率将在开始时迅速减少损失,但可能很难找到一个好的解决方案。

把你当前的学习速度乘以0.1或10。

37. 克服NaNs

在训练RNN时,获得NaN (Non-a-Number)是一个更大的问题。一些解决方法:

降低学习速率,特别是在前100次迭代中获得NaNs时。

NaNs可以由除以0或ln(0)或负数得到。

Russell Stewart有很多关于如何处理NaNs的建议()。

尝试逐层评估你的网络,并查看NaNs出现在哪里。

英文原文:https://blog.slavv.com/37-reasons-why-your-neural-network-is-not-working...

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106819
  • AI
    AI
    +关注

    关注

    89

    文章

    38171

    浏览量

    296900
  • rnn
    rnn
    +关注

    关注

    0

    文章

    92

    浏览量

    7302
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    (q7_t) 和 16 位整数 (q15_t)。 卷积神经网络示例: 本示例中使用的 CNN 基于来自 Caffe 的 CIFAR-10 示例。神经网络由 3 卷积层组成,中间散布着 ReLU
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    通过实践,本文总结了构建CNN网络模型并优化的一般化建议,这些建议将会在构建高准确率轻量级CNN神经网络模型方面提供帮助。 1)避免单层神经网络
    发表于 10-28 08:02

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练
    发表于 10-22 07:03

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    基于FPGA搭建神经网络的步骤解析

    本文的目的是在一神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型的权重和偏置文件以TXT文件格式导出,然后
    的头像 发表于 06-03 15:51 904次阅读
    基于FPGA搭建<b class='flag-5'>神经网络</b>的步骤解析

    BP神经网络的调参技巧与建议

    BP神经网络的调参是一复杂且关键的过程,涉及多个超参数的优化和调整。以下是一些主要的调参技巧与建议: 一、学习率(Learning Rate) 重要性 :学习率是BP神经网络中最重要
    的头像 发表于 02-12 16:38 1467次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1325次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可能导致模型在
    的头像 发表于 02-12 15:51 1446次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过
    的头像 发表于 02-12 15:36 1601次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反
    的头像 发表于 02-12 15:18 1294次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,
    的头像 发表于 02-12 15:15 1359次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两核心过程。以下是关于BP神经网络基本原理的介绍: 一、
    的头像 发表于 02-12 15:13 1542次阅读

    BP神经网络在图像识别中的应用

    传播神经网络(Back Propagation Neural Network),是一种多层前馈神经网络,主要通过反向传播算法进行学习。它通常包括输入层、一或多个隐藏层和输出层。BP神经网络
    的头像 发表于 02-12 15:12 1194次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两阶段:前向传播和反向传播。以下是训练BP
    的头像 发表于 02-12 15:10 1472次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2267次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法