0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

瞬态条件和开关模式操作有关的MOSFET特性

汽车电子工程知识体系 来源:汽车电子硬件设计 作者:汽车电子硬件设计 2021-03-09 09:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在本文中,我们将讨论与瞬态条件和开关模式操作有关的MOSFET特性。

在上一篇有关低频MOSFET的文章中,我们研究了控制MOSFET稳态工作的参数,例如阈值电压,导通状态电阻和最大漏极电流。这些属性与所有应用相关,并且,如果您正在设计低频系统,则它们涵盖了选择合适设备所需的大多数信息。

但是,如今,即使在模拟应用中,采用MOSFET作为由相对高频(通常是脉宽调制)的数字信号控制的开关也是非常普遍的。最好的例子是D类放大器

尽管输入信号是模拟信号,而输出信号是模拟信号,但是使用从完全导通到完全截止的晶体管可以实现放大。开关模式控制比线性控制要有效得多,这使它成为一个有吸引力的选择,即使最终的电路更复杂且最终的信号受到开关噪声的负面影响。

暂态最大值

在上一篇文章中,我们讨论了最大连续漏极电流。此参数具有对应的瞬态事件规范。

最大瞬态漏极电流称为“脉冲漏极电流”或“峰值漏极电流”。这里涉及一些变量(脉冲宽度,占空比,环境温度),因此该规范不是非常有用。但是,它的确可以使您大致了解设备可以承受的短期电流,在某些情况下,这比稳态极限更为重要(我正在考虑在大电流条件下的应用与直通,浪涌或低占空比PWM相关)。

与在瞬态事件的情况下避免损坏有关的另一个参数是漏极-源极雪崩能量。该规范以焦耳为单位给出,但与超过MOSFET的漏源击穿电压的电压有关。这个问题有点复杂,当然不在本文的讨论范围之内。如果您想了解有关雪崩特性的更多信息,我建议您从英飞凌获取此应用笔记。

该图取自上述英飞凌应用笔记。

电容

FET的动态参数中最突出的是输入电容,输出电容和反向传输电容。这些与典型的(更直观地称为)MOSFET电容密切相关,这些电容称为栅极-漏极电容(CGD),栅极-源极电容(C GS)和漏极-源极电容(C DS)。

输入电容(C ISS)是输入信号即C GD加C GS所看到的电容。

输出电容(C OSS)是输出信号看到的电容;在分立FET的情况下,输出端子为漏极,因此C OSS = C GD + C DS。

反向传输电容(C RSS)是漏极和栅极之间的电容,即C RSS = C GD。

输入电容(与驱动器电路的电阻一起)会影响开关特性,因为更多的输入电容意味着更多的导通和关断延迟。当驱动FET导通时,必须为该电容充电,而要关闭器件时,则必须对其放电。

在考虑功耗和开关电路的谐振频率时,输出电容会发挥作用。

反向传输电容会影响导通和关断时间(这并不奇怪,因为它是输入电容的一部分),但请注意,它形成了一个反馈环路(因为漏极被视为输出,而栅极被视为输入)。反馈路径中的电容器会受到米勒效应的影响,因此,C RSS影响瞬态响应的程度大于我们根据标称电容值的预期。

栅极电荷

事实证明,MOSFET输入电容并不是评估器件开关特性的最可靠方法,因为电容值受电压和电流条件的影响。下图让您了解了三个电容值如何根据漏极-源极电压的变化而变化。

摘自NXP / Nexperia发布的此应用笔记。

该应用笔记还提到了“器件尺寸和跨导”,这些因素使得难以将电容用作选择一个MOSFET而不是另一个MOSFET的基础。最好使用栅极电荷规格;例如:

规格取自此Vishay数据表。

栅极电荷显然是评估开关特性的更直接的方法。电荷等于电流乘以时间,因此,如果您知道驱动栅极的器件的输出电流并且知道FET的栅极电荷规格,则可以计算出打开器件所需的时间。

开关时间

如果您确实想避免所有计算和理论上的细节,则可以仅将零件搜索限制在数据手册中给出开关时间的FET上。查找标有“开启时间”(或“关闭时间”),“上升时间”(或“下降时间”)和“延迟时间”的规格。

这种方法当然很简单,但通常情况下,最简单的解决方案并不是最可靠的解决方案。这些“预煮”的开关规格基于特定条件(也许最重要的是栅极驱动电路的电阻),可能与您的预期条件或不同数据手册中使用的条件不一致。上面提到的NXP / Nexperia应用笔记说,在比较一个制造商的开关时间规格与另一制造商的开关时间规格时,“需要格外小心”。

结论

MOSFET的动态行为并不是特别简单,但是我希望本文能够提供足够的信息,以帮助您更全面地评估不同器件的动态行为。如果您有任何经验可以分享有关分立FET的实际瞬态行为,请随时在评论中分享您的想法。

原文标题:选择合适的MOSFET:了解动态MOSFET参数

文章出处:【微信公众号:汽车电子硬件设计】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电流
    +关注

    关注

    40

    文章

    7196

    浏览量

    140438
  • MOSFET
    +关注

    关注

    150

    文章

    9461

    浏览量

    229938
  • 动态
    +关注

    关注

    0

    文章

    72

    浏览量

    21136

原文标题:选择合适的MOSFET:了解动态MOSFET参数

文章出处:【微信号:QCDZYJ,微信公众号:汽车电子工程知识体系】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MOSFET:电子世界的“开关大师”与技术演进

    开关特性和稳定的控制性能,支撑着整个电子信息产业的运转。对于电子工程相关专业的学生和行业从业者而言,深入理解MOSFET的技术本质、发展脉络与应用逻辑,既是夯实专
    的头像 发表于 11-27 15:48 298次阅读
    <b class='flag-5'>MOSFET</b>:电子世界的“<b class='flag-5'>开关</b>大师”与技术演进

    功率MOSFET管的应用问题分析

    )的温度系数等条件综合考虑,来选择合适的电阻分压比,从而保证系统的设计要求。 负载开关电路利用功率MOSFET管在开通过程中较长时间工作在线性区(放大区、恒流区)控制上电瞬态输出容性大
    发表于 11-19 06:35

    开关柜机机械特性在线监测

    开关柜的机械特性是其机械结构在操作过程中的动态性能,这是直接影响设备运行的可靠性与安全性的一项重要指标。其核心内容在于操作机构特性(如分合闸
    的头像 发表于 07-21 14:29 295次阅读

    开关速度看MOSFET在高频应用中的性能表现

    一、MOSFET开关速度的定义与影响因素开关速度是MOSFET在导通(开)和关断(关)状态之间的切换速度,通常以上升时间(tr)、下降时间(tf)和
    的头像 发表于 07-01 14:12 613次阅读
    从<b class='flag-5'>开关</b>速度看<b class='flag-5'>MOSFET</b>在高频应用中的性能表现

    SLM6160:9V/6A高性能DC-DC 升压变换器,便携设备动力引擎!

    提高效率。SLM6160利用简单的外部环路补偿,可在整体方案尺寸、成本和瞬态性能之间进行优化。 核心特性 1、9V/6A强劲输出|集成50mΩ MOSFET 2、双模式高效:PWM(中
    发表于 06-30 08:38

    全桥DC-DC开关电源参考设计

    DC-DC开关电源电路特性:· 输入和输出电压感应提供欠压和过压保护,变压器初级电流感应提供过载和短路保护。· 全桥MOSFET驱动器用于驱动主全桥MOSFET,半桥
    发表于 05-23 15:09

    MOSFET失效原因及对策

    area)是指安全工作区,由一系列限制条件组成的一个漏源极电压VDS和漏极电流ID的二维坐标图,开关器件正常工作时的电压和电流都不应该超过该限定范围。SOA区域分为以下5个区域。 A线是由导通电
    发表于 04-23 14:49

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    0  引言SiC-MOSFET 开关模块(简称“SiC 模块”)由于其高开关速度、高耐压、低损耗的特点特别适合于高频、大功率的应用场合。相比 Si-IGBT, SiC-MOSFET
    发表于 04-23 11:25

    SiC MOSFET的动态特性

    本文详细介绍了SiC MOSFET的动态特性。包括阈值电压特性、开通和关断特性以及体二极管的反向恢复特性。此外,还应注意测试波形的准确性。
    的头像 发表于 03-26 16:52 1751次阅读
    SiC <b class='flag-5'>MOSFET</b>的动态<b class='flag-5'>特性</b>

    MOSFET与IGBT的区别

    (零电压转换) 拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。此外,还通过举例说明二极管的恢复特性是决定
    发表于 03-25 13:43

    MOSFET开关损耗计算

    )与电源转换技术来提高电源转换效率之外,新式功率器件在高效能转换器中所扮演的重要角色,亦不容忽视。其中,Power MOSFET 目前已广泛应用于各种电源转换器中。本文将简述Power MOSFET特性
    发表于 03-24 15:03

    SiC MOSFET的静态特性

    商用的Si MOSFET耐压普遍不超过900V,而SiC拥有更高的击穿场强,在结构上可以减少芯片的厚度,从而较大幅度地降低MOSFET的通态电阻,使其耐压可以提高到几千伏甚至更高。本文带你了解其静态特性
    的头像 发表于 03-12 15:53 1409次阅读
    SiC <b class='flag-5'>MOSFET</b>的静态<b class='flag-5'>特性</b>

    一文带你读懂MOSFET开关损耗计算!!(免积分)

    特性、参数与应用,除针对目前低电压 Power MOSFET 的发展趋势做简单介绍外,还将简单比较新一代 Power MOSFET 的性能。 Power MOSFET 的参数与应
    发表于 03-06 15:59

    MOSFET开关损耗和主导参数

    过程中MOSFET开关损耗功率MOSFET的栅极电荷特性如图1所示。值得注意的是:下面的开通过程对应着BUCK变换器上管的开通状态,对于下管是0电压开通,因此
    发表于 02-26 14:41

    SiC MOSFET的参数特性

    碳化硅(SiC)MOSFET作为宽禁带半导体材料(WBG)的一种,具有许多优异的参数特性,这些特性使其在高压、高速、高温等应用中表现出色。本文将详细探讨SiC MOSFET的主要参数
    的头像 发表于 02-02 13:48 2479次阅读