0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

细胞线粒体内部精细结构丨全新SIM超分辨技术

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

生物圈的小伙伴肯定还记得前段时间的一则刷屏新闻:

北京大学陈良怡教授团队和华中科技大学谭山教授团队合作,成功发明了一种新型结构光照明超分辨显微成像技术——海森结构光照明显微镜。研究成果于高水平学术期刊Nature Biotechnology(IF=41.67)进行了发表。

之所以轰动,是因为该技术拥有超高的采集速度和灵敏度,以及低于共聚焦和其他超分辨成像方法(STORM/STED等)千分之一以上的光毒性和光漂白效应,成为了目前进行超长时间活细胞高速超分辨成像的利器。

而且,这个牛气哄哄的技术一经发明,便已经夺得生物成像领域的好几个“首次”:

· 首次在活体细胞中清晰解析出线粒体的内膜结构,以及线粒体融合与裂解过程中内膜的动态变化;

· 首次观察到活体细胞中线粒体嵴与内质网之间的相互作用与运动;

· 首次通过连续成像的形式,捕捉到了完整的囊泡分泌与融合过程中的孔道及融合中间态。

那么究竟这台高大上仪器是怎样被研发而出?它爆炸性的技能点具体又是怎样?接下来我们就来深度解读一下啦!

实时观察线粒体融合分裂及内膜动态变化

从1994年Stefen W. Hell提出STED显微镜理论,到2014年三位科学家因为超分辨显微技术获得诺贝尔化学奖。短短20年间,超分辨成像可以说是声名大噪,各种超分辨成像平台也几乎成为了各大高校研究所的必备。

但是,一个奇怪的现象让北京大学的陈良怡教授产生了疑惑:虽然遍地开花,但由超分辨成像技术所带来的生物学新发现却屈指可数。究竟是何种原因,限制了超分辨显微成像在生物研究领域大显身手?

目前,主流的超分辨成像技术主要有三类:

1、基于可随机开关的单分子荧光闪烁定位的STORM/PALM方法;

2、基于荧光蛋白受激发射损耗原理的STED方法;

3、基于结构光调制与解调制图像信息的SIM方法。

其中,STED通过纯光学方法能够获得50 nm甚至更低的分辨率,不通过算法拟合重建,成像速率取决于共聚焦平台的振镜扫描速率。但是其明显的弊端在于用于激发样品的光功率是最强的(MW/cm2数量级,相当于100万个太阳同时在天上炙烤你的皮肤)。如此一来,既会对样品产生积累的光毒性,又容易在长时间的活细胞观察过程中使样品荧光淬灭。

STORM/PALM相对于STED来说光照条件要稍微温和一些(kW/cm2数量级,大概也就相当于1000个太阳吧),分辨率也能到50 nm以下。但由于获得一张超分辨图片需要基于成百上千张原始的单分子闪烁图像,并通过算法拟合重建。所以成像的速度也是制约其发展的重要原因。同时,STORM/PALM对于荧光标记物的选择是非常苛刻的,因此几乎不能在同一个样品上实现多个蛋白的超分辨观察。

但是另外一种超分辨率方法,基于莫尔条纹效应的SIM就不一样了!

基于傅里叶光学和算法重建,SIM能够用最低的光功率(W/cm2数量级)获得长时间的活细胞超分辨图像。同时它对荧光标记物也无选择性,可以轻松实现多标记物观察。最重要的是由于重建一张超分辨图像只需要9-15张原始图像,因此SIM也是在相同成像视野下最快的超分辨方法。该方法非常适合生物样品中快速生物学过程的记录,如细胞内膜系统和细胞骨架的动态学研究、离子成像以及神经放电等等。

不过SIM也有一个明显的劣势——只能达到100 nm左右的分辨率。虽然使用非线性SIM成像可以使分辨率媲美其他两种方法,但代价则是需要使用很强的激发光,失去了活细胞观察的优势。

看准了SIM成像的优势,陈教授团队便开始着手进行线性SIM方法的优化。为了达到88 nm,188 Hz的优良性能,他们主要在以下几个方面做出了努力:

1、使用高NA的物镜,提升极限分辨率,尽可能多的接收光信号

提升成像系统的NA值一直是提高系统分辨率的不二法门。通过使用NA值高达1.7的油镜,再加上SIM方法本身的2倍分辨率提升,Hessian-SIM系统的最佳分辨率可以达到88 nm。

在相同的光照条件下,以1 Hz频率进行拍摄1 h,传统SIM使用7 ms曝光,而Hessian-SIM使用0.5 ms曝光。

陈良怡教授团队一直致力于对高端的生物成像技术进行革新性的改良和研发。除了解决超分辨成像的长时间或高速问题之外,早在2014年就与程和平院士就将双光子和光片成像技术结合开发出激发光片范围更大同时z轴分辨率更高的成像技术(Zong W, Chen L, et al.CellRes. 2014 Sep 26. doi: 10.1038/cr.2014.124);2017年又针对双光子在神经生物学应用中的灵活性,开发出了现今质量最小的头戴式微型双光子显微镜(Zong W, Wu R, Li M, ChenL, et al. Nat Methods. 2017 May 29. doi: 10.1038/nmeth.4305),解决了行为学和活体显微观察的矛盾。

除了科研相机外,滨松的光电器件,如光电倍增管等,也参与到了这些重要研究中。以淬炼了60余年的光电探测技术,为发展更好的科研成像技术,贡献出滨松的一份力量。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Sim
    Sim
    +关注

    关注

    2

    文章

    258

    浏览量

    41674
  • 光学系统
    +关注

    关注

    5

    文章

    261

    浏览量

    19027
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    索尼FCB-CR8530分辨率变焦:无人机光电吊舱的“视觉增强引擎”

    组件,为复杂环境下的空中观测提供了可靠的技术支撑。 分辨率变焦:突破光学极限的成像革新 传统光学变焦受限于镜头物理结构,在远距离拍摄时容易出现细节模糊、
    的头像 发表于 10-21 14:05 214次阅读

    中科曙光智融合技术重塑生物医药研发新范式

    当前,海量生物数据的处理与分析能力已成为制约行业发展的关键瓶颈。近日,依托曙光智融合技术建设的华东某全国产计算中心,与单细胞测序领域代表性企业墨卓生物达成战略合作。以强大算力为单细胞
    的头像 发表于 08-11 11:12 964次阅读

    共聚焦显微镜原理:纳米级成像技术的关键

    的超精细结构。美能光子湾将带您深入了解共聚焦显微镜的工作原理、技术优势,展示这一技术如何为科学研究和工业应用带来革命性的变化。Part.01共聚焦显微技术共聚焦,这个名字来
    的头像 发表于 08-05 17:55 1266次阅读
    共聚焦显微镜原理:纳米级成像<b class='flag-5'>技术</b>的关键

    意法半导体全新eSIM解决方案ST4SIM-300介绍

    STMicroelectronics 全新 eSIM 解决方案 ST4SIM-300M,正是为满足这一需求而生。ST4SIM-300M 亦符合 GSMA 最新 SGP.32 远程 SIM
    的头像 发表于 07-30 16:35 1060次阅读

    蔚来款新车型搭载远峰科技清流媒体内后视镜

    蔚来智能电动旗舰ET9以及2025款新ES6 EC6 ET5T ET5都搭载了远峰科技清流媒体内后视镜,为用户带来前所未有的驾驶新体验。远峰科技流媒体内后视镜采用一体化极窄边框设计,线条流畅,兼具科技美感与广阔视野,引领智能出
    的头像 发表于 06-11 14:12 1041次阅读

    太赫兹细胞能量仪主控芯片方案单片机开发控制板布局规划

    毫米以上,可引起人体内蛋白质、细胞及水分子共振,深度是一般远红外线治疗仪的50—100倍。当人体受到太赫兹照射时,由于其频率与人体中的细胞分子、原子团状的水分子的运动频率相一致,引起共振效应,其能量
    发表于 03-25 15:37

    VirtualLab Fusion应用:透镜的设计与分析

    与设置:单平台互操作性 连接建模技术构透镜  构透镜(柱结构分析)  传播到焦点  探测器 周期性微纳米结构可用的建模
    发表于 03-04 10:05

    氩离子技术之电子显微镜样品制备技术

    在材料科学的微观研究领域,电子显微镜扮演着至关重要的角色。它能够深入揭示材料样品内部精细结构,为科研人员分析组织形貌和结构特征提供了强大的技术支持。扫描电镜(SEM)样品制备扫描电镜
    的头像 发表于 02-25 17:26 754次阅读
    氩离子<b class='flag-5'>技术</b>之电子显微镜样品制备<b class='flag-5'>技术</b>

    景深3D检测显微镜技术解析

    ,确保产品质量和生产效率。 在生物医学领域,景深3D检测显微镜的应用同样令人瞩目。传统的显微镜在观察细胞和组织时,往往只能获取二维图像,难以全面反映其真实结构。而上海桐尔的技术能够帮
    发表于 02-25 10:51

    细胞多重 CARS 光谱成像

    流行的分子成像技术只能揭示人体内用色素或荧光蛋白标记的特定分子的分布或行为。然而,拉曼光谱允许研究人员通过光谱分析来识别未标记分子的成分。因此,振动(拉曼)光谱通常被称为分子指纹图谱。使用这种无标记分子成像增加了发现体内意外变
    的头像 发表于 02-14 06:23 604次阅读
    活<b class='flag-5'>细胞</b>的<b class='flag-5'>超</b>多重 CARS 光谱成像

    振弦式渗压计:将压力转换为频率信号的高灵敏度装置 长期测量水工结构物和土体内部渗透水压力

    振弦式渗压计:将压力转换为频率信号的高灵敏度装置 长期测量水工结构物和土体内部渗透水压力 振弦式渗压计是一种用于感受压力并将其转换为与压力成一定关系的频率信号输出的装置。其典型结构包括压力感应膜、振
    的头像 发表于 02-05 11:24 452次阅读

    SIM卡座按结构类型可划分成哪些

    在探讨SIM卡座按结构分类的不同类型时,我们首先需要了解SIM卡座的基本定义和功能。SIM卡座是手机或其他电子设备中用于放置SIM卡的卡槽,
    的头像 发表于 01-13 18:22 2456次阅读
    <b class='flag-5'>SIM</b>卡座按<b class='flag-5'>结构</b>类型可划分成哪些

    如何选择扫描电镜的分辨率?

    样品的精细微观结构,像纳米级别的晶体结构细胞的超微结构等,就需要更高的分辨率,通常要达到1-3
    的头像 发表于 12-25 14:29 1213次阅读
    如何选择扫描电镜的<b class='flag-5'>分辨</b>率?

    新型分辨显微成像技术:突破光学衍射极限

    MLS-SIM应用于清醒小鼠皮层分辨成像 中科院脑科学与智能技术卓越创新中心王凯研究组在《自然·方法》(Nature Methods)上在线发表了题为《Super-resolutio
    的头像 发表于 12-19 06:21 759次阅读
    新型<b class='flag-5'>超</b><b class='flag-5'>分辨</b>显微成像<b class='flag-5'>技术</b>:突破光学衍射极限

    从大卡到小卡,SIM卡座演变及类型全解析

    SIM卡座,作为手机及众多智能设备中不可或缺的组成部分,承担着连接SIM卡与设备、实现通信功能的重要角色。随着科技的进步和电子产品设计的日益精细化,SIM卡座也经历了从大到小、从简单到
    的头像 发表于 12-13 10:11 6627次阅读
    从大卡到小卡,<b class='flag-5'>SIM</b>卡座演变及类型全解析