0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

应用于微纳米级封装的量子点荧光微球结构

电子设计 来源:电子设计 作者:电子设计 2020-12-24 12:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

胶体量子点具有发光光普连续可调,发射光色纯度高,且具有较高的转换效率,作为下一代照明与显示技术的核心材料已经取得了比较成熟的制备技术。量子点通常不能直接使用,因为量子点比较脆弱,自身由于纳米尺寸表面能较大,会发生团簇,造成荧光猝灭,容易发生能量转移;同时胶质层容易被侵蚀,留下缺陷能级,形成非辐射跃迁通道,造成荧光衰退。常规的物理化学环境都会让量子点发生荧光猝灭。因此,如何使用量子点是目前一个比较热门和关键的问题。

在实际的应用过程中,往往通过以下两种方式实现量子点材料的封装:

1、将量子点分散到聚合物基体中,获得荧光复合材料,形成简单的“量子点-载体材料(PMMA)”结构(详见参考文献1),使用远程封装方式,但是由于量子点会因为和表面配体和介质层不兼容,在PMMA中慢慢团聚,使量子点荧光发光波长红移,荧光效率衰退明显;载体材料(PMMA)阻水阻氧能力较差,水氧小分子的渗透也容易对量子点表面收到侵蚀,造成荧光衰退。

2、使用表面活性剂对其表面进行有机修饰,参考文献2,为了阻止量子点的团聚,对量子点表面进行转氨基化处理,该方法可以使量子点和周围的介质层材料相容性增强,有效减少团聚和水氧的侵蚀。但是,该方法容易对量子点表面配体造成破坏,影响量子点的初始荧光效率。

对于量子点和硅胶直接复合方式封装,由于量子点外层的胶质配体和硅胶不相容。尤其是某些表面配体中含有硫(S)元素的时候,会和硅胶中的铂(Pt)催化剂作用,从而会影响硅胶的固化,导致其无法固化。而使用非固化硅胶,则往往由于表面配体和硅胶的兼容性问题,出现团簇。对于量子点聚合物材料,其荧光特性受到引发剂、聚合物活性位点和高分子化学聚合反应影响,使得量子点聚合物荧光衰退或猝灭。对于量子点表面直接处理,如生长二氧化硅、表面氨基化修饰等,主要由于表面配体的置换造成了量子点的荧光猝灭,同时由于水分子氧气等小分子的渗透,侵蚀量子点表面,产生发光缺陷,带来荧光效率衰退。

因此,在器件中使用高发光效率和高稳定性量子点或量子点聚合物,必须解决以下几个问题:

1、量子点材料,不能破坏其自身的发光效率。

2、量子点载体环境应和量子点表面相兼容,防止量子点自身团聚、配体脱落。

3、设置阻挡层,阻止小分子(水汽和氧气)对量子点表面的侵蚀。

天津市中环量子科技有限公司长期致力于量子点材料的研发、生产与销售,公司于2015年12月提出了一种封装用的量子点荧光微球结构,该结构包括荧光量子点、具有纳米栅格结构的介孔颗粒材料和阻挡层,如图1所示,其中荧光量子点分布在介孔颗粒材料中,阻挡层包覆在介孔颗粒材料的外表面。通过化学、非化学手段,使得荧光量子点进入介孔颗粒材料,在非极性溶剂下,没有破坏胶质荧光量子点的表面结构,保持了荧光量子点的荧光效率。该结构可以有效的减缓量子点的团聚,表面包覆的阻挡层,可以阻止水氧小分子的侵蚀,提高量子点荧光微球的相容性和稳定性。同年,公司也向美国专利局提交了该项专利申请,并于2017年2月获得授权,详见图2,量子点荧光微球为公司自主知识产权产品。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • led
    led
    +关注

    关注

    243

    文章

    24434

    浏览量

    687421
  • 量子点
    +关注

    关注

    7

    文章

    249

    浏览量

    26988
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    破解铜/银迁移难题:纳米级离子捕捉剂在先进封装中的工程化应用

    在追求更高I/O密度和更快信号传输的驱动下,铜互连与银浆印刷已成为先进封装的标准配置。然而,Cu²⁺和Ag⁺在电场下的迁移速度是Al³⁺的5-8倍,极易引发枝晶生长导致短路失效。本文聚焦这一行业痛,系统阐述纳米级离子捕捉剂IX
    的头像 发表于 12-01 16:53 271次阅读
    破解铜/银迁移难题:<b class='flag-5'>纳米级</b>离子捕捉剂在先进<b class='flag-5'>封装</b>中的工程化应用

    毫米行程柔性驱动压电纳米定位台:超大行程,纳米级精度

    在精密制造与科研领域,纳米级的定位精度往往是决定成败的关键。为了满足大行程与高精度的平衡需求,芯明天推出全新P15.XY1000压电纳米定位台,在继承P15系列卓越性能的基础上,将单轴行程提升
    的头像 发表于 10-16 15:47 194次阅读
    毫米行程柔性驱动压电<b class='flag-5'>纳米</b>定位台:超大行程,<b class='flag-5'>纳米级</b>精度

    尔斯ePTFE(膨体聚四氟乙烯)防水透气膜介绍及应用

    一、概述尔斯ePTFE(膨体聚四氟乙烯)防水透气膜是一种革命性的高分子功能材料,被誉为设备的“智能呼吸系统”。它基于独特的ePTFE材料,通过精密控制拉伸工艺形成无数微米甚至纳米级的网状微孔通道
    的头像 发表于 09-11 12:08 1200次阅读
    <b class='flag-5'>微</b>尔斯ePTFE(膨体聚四氟乙烯)防水透气膜介绍及应用

    触针式轮廓仪 | 台阶仪 | 纳米级多台阶高度的精准测量

    纳米级三台阶高度样本(8nm/18nm/26nm)的高精度测量。并应用于薄膜沉积速率的计算与验证,结果显示轮廓仪与光谱椭偏仪的沉积速率测量结果一致。1触针轮廓仪测量f
    的头像 发表于 07-22 09:52 482次阅读
    触针式轮廓仪 | 台阶仪 | <b class='flag-5'>纳米级</b>多台阶高度的精准测量

    Keithley 2450数字源表纳米级材料测试的精密利器

    、操作复杂性高等问题亟待解决。美国吉时利(Keithley)推出的2450数字源表,凭借高精度、多功能及智能化设计,为纳米级材料测试提供了突破性解决方案,成为科研与工业领域的精密利器。   一、核心技术特性:精密测量的基石
    的头像 发表于 07-09 14:40 420次阅读
    Keithley 2450数字源表<b class='flag-5'>纳米级</b>材料测试的精密利器

    压电纳米定位系统搭档金刚石色心-在纳米尺度上捕捉量子世界的奥秘

    量子计算、生物传感、精密测量等前沿领域,金刚石中的氮-空位(NV)色心正成为颠覆性技术的核心材料,其独特的量子特性为科技突破提供了无限可能,更因其卓越的性质和广泛的应用而成为纳米级研究的有力工具
    的头像 发表于 06-05 09:30 780次阅读
    压电<b class='flag-5'>纳米</b>定位系统搭档金刚石色心-在<b class='flag-5'>纳米</b>尺度上捕捉<b class='flag-5'>量子</b>世界的奥秘

    滚珠导轨:电子制造“纳米级”精度的运动基石

    在电子制造与半导体设备追求“微米工艺、纳米级控制”的赛道上,滚珠导轨凭借高刚性、低摩擦与高洁净特性,成为精密运动系统的核心载体。
    的头像 发表于 05-29 17:46 499次阅读
    滚珠导轨:电子制造“<b class='flag-5'>纳米级</b>”精度的运动基石

    引进白光干涉仪管控流控芯片形貌,性能大幅提升

    白光干涉仪纳米级管控流控芯片表面粗糙度,以及流道高度和宽度,提升流控产品性能与质量,满足不同客户需求。
    的头像 发表于 05-29 17:34 538次阅读
    引进白光干涉仪管控<b class='flag-5'>微</b>流控芯片形貌,性能大幅提升

    纳米级形貌快速测量,优可测白光干涉仪助力摩擦磨损学科发展

    研究摩擦学,能带来什么价值?从摩擦磨损到亚纳米级精度,白光干涉仪如何参与摩擦学发展?
    的头像 发表于 04-21 12:02 1074次阅读
    <b class='flag-5'>纳米级</b>形貌快速测量,优可测白光干涉仪助力摩擦磨损学科发展

    安泰功率放大器在流控纳米药物递送系统中的应用分享

    评为“影响人类未来15件最重要发明之一”。 那么今天Aigtek安泰电子小编就给大家分享一下功率放大器在流控纳米药物递送系统中的应用,一起来学习吧~ 什么是流控? 流控是利用
    的头像 发表于 04-07 11:46 514次阅读
    安泰功率放大器在<b class='flag-5'>微</b>流控<b class='flag-5'>纳米</b>药物递送系统中的应用分享

    JCMSuite应用-利用柱和量子产生单光子源

    这个例子的灵感来自Gregersen等人[1],其中将量子放置在柱中以产生单光子源。但是,我们简化了问题,以便3D计算可以在笔记本电脑上流畅地运行: 腔的几何形状 下图显示了放
    发表于 03-24 09:05

    JCMSuite应用——透镜(Micro lens)仿真

    该示例是对 Gschrey 等人的单光子源设计[1]的改编。 该几何结构由多层衬底构成,衬底为布拉格反射镜,在衬底顶部有一个透镜,量子位于顶层内: 由布拉格反射镜组成的
    发表于 03-13 08:54

    芯片互连技术深度解析:焊、铜柱与的奥秘

    随着电子设备向小型化、高性能化发展,芯片封装技术也在不断演进。高密度芯片封装是满足现代电子产品需求的关键技术之一,而芯片互连技术作为封装的核心环节,经历了从焊到铜柱再到
    的头像 发表于 02-20 10:06 2975次阅读
    芯片互连技术深度解析:焊<b class='flag-5'>球</b>、铜柱与<b class='flag-5'>微</b>凸<b class='flag-5'>点</b>的奥秘

    聚焦离子束技术:核心知识与应用指南

    精细调控离子流在纳米尺度的加工技术中,实现离子流的亚微米乃至纳米级聚焦是一项至关重要的工艺。借助于精密的偏转和加速机制,离子流能够进行精确的扫描运动,完成
    的头像 发表于 01-08 10:59 866次阅读
    聚焦离子束技术:核心知识与应用指南

    什么是晶圆封装

    晶圆封装,更常见的表述是晶圆技术或晶圆
    的头像 发表于 12-11 13:21 1341次阅读