0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

我国实现量子计算优越性里程碑,量子计算原型机“九章推出

牵手一起梦 来源:C114通信网 作者:余予 2020-12-04 14:23 次阅读

我国成功达到量子计算研究的第一个里程碑:量子计算优越性(国外也称之为“量子霸权”)。

来自中国科大的消息显示,中国科学技术大学潘建伟、陆朝阳等组成的研究团队与中科院上海微系统所、国家并行计算机工程技术研究中心合作,构建了76个光子的量子计算原型机“九章”,实现了具有实用前景的“高斯玻色取样”任务的快速求解。

根据现有理论,该量子计算系统处理高斯玻色取样的速度比目前最快的超级计算机快一百万亿倍,其速度比去年谷歌发布的53个超导比特量子计算原型机“悬铃木”快一百亿倍。

图片1:“九章”量子计算原型机光路系统原理图:左上方激光系统产生高峰值功率飞秒脉冲; 左方25个光源通过参量下转换过程产生50路单模压缩态输入到右方100模式光量子干涉网络; 最后利用100个高效率超导单光子探测器对干涉仪输出光量子态进行探测。(制图:陆朝阳,彭礼超)

这一重磅成果于今日凌晨在国际学术期刊《科学》在线发布,审稿人评价该工作是“一个最先进的实验”,“一个重大成就”。

据了解,量子计算机在原理上具有超快的并行计算能力,可望通过特定算法在一些具有重大社会和经济价值的问题方面相比经典计算机实现指数级别的加速,例如密码破译、大数据优化、材料设计、药物分析等方面。

当前,研制量子计算机已成为世界科技前沿的最大挑战之一,成为欧美各发达国家角逐的焦点。

潘建伟团队一直在光量子信息处理方面处于国际领先水平:2017年,该团队构建了世界首台超越早期经典计算机(ENIAC)的光量子计算原型机;2019年,团队进一步研制了确定性偏振、高纯度、高全同性和高效率的国际最高性能单光子源,实现了20光子输入60模式干涉线路的玻色取样,输出复杂度相当于48个量子比特的希尔伯特态空间,逼近了“量子计算优越性”。

近期,该团队通过自主研制成功构建了76个光子100个模式的高斯玻色取样量子计算原型机“九章”(命名为“九章”是为了纪念中国古代最早的数学专著《九章算术》)。

根据目前最优的经典算法,“九章”对于处理高斯玻色取样的速度,比目前世界排名第一的超级计算机“富岳”快一百万亿倍,比谷歌去年发布的53比特量子计算原型机“悬铃木”快一百亿倍。同时,“九章”还克服了谷歌53比特随机线路取样实验中量子优越性依赖于样本数量的漏洞。

据了解,“九章”输出量子态空间规模达到了1030(“悬铃木”输出量子态空间规模是1016,目前全世界的存储容量是1022)。

该成果牢固确立了我国在国际量子计算研究中的第一方阵地位,为未来实现可解决具有重大实用价值问题的规模化量子模拟机奠定了技术基础。此外,基于“九章号”量子计算原型机的高斯玻色取样算法在图论、机器学习、量子化学等领域具有潜在应用,将是后续发展的重要方向。

除此之外,上述项目受到了中国科学院、安徽省、科技部、上海市和基金委的支持。

对此成果,研究人员希望这能够激发更多的经典算法模拟方面的工作,也预计将来会有提升的空间。毕竟量子优越性实验并不是一个一蹴而就的工作,而是更快的经典算法和不断提升的量子计算硬件之间的竞争,但最终量子并行性会产生经典计算机无法企及的算力。相信这一幕的出现不会太远。

附:量子计算机研究的三个指标性发展阶段

1.发展具备50-100个量子比特的高精度专用量子计算机,对于一些超级计算机无法解决的高复杂度特定问题实现高效求解,实现计算科学中“量子计算优越性”的里程碑。

2.通过对规模化多体量子体系的精确制备、操控与探测,研制可相干操纵数百个量子比特的量子模拟机,用于解决若干超级计算机无法胜任的具有重大实用价值的问题(如量子化学、新材料设计、优化算法等)。

3.通过积累在专用量子计算与模拟机的研制过程中发展起来的各种技术,提高量子比特的操纵精度使之达到能超越量子计算苛刻的容错阈值(》99.9%),大幅度提高可集成的量子比特数目(百万量级),实现容错量子逻辑门,研制可编程的通用量子计算原型机。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算机
    +关注

    关注

    19

    文章

    6617

    浏览量

    84034
收藏 人收藏

    评论

    相关推荐

    再刷世界纪录!“九章三号”国产光量子计算原型机研制成功,速度提升一百万倍!

    计算原型机九章三号”。   这项成果再度刷新光量子信息技术世界纪录,求解高斯玻色取样数学问题比目前全球最快的超级计算机快一亿亿倍,在研制
    的头像 发表于 10-12 00:22 2247次阅读

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    的未来。首先,量子计算机在药物研发领域具有颠覆的潜力。通过模拟分子的复杂相互作用,量子计算机可以加速新药的研发过程,这不仅可以更快地找到治
    发表于 03-13 19:28

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    的位置和方向对应着量子比特的状态。量子比特状态的操作和变化可以在布洛赫球上用旋转和移动的方式进行描述。通过旋转和移动布洛赫球上的点,我们可以改变量子比特的状态,实现量子
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算的基本原理,利用了量子的叠加态的特性。然后量子计算如何实现信息的传递呢,使用了量子纠缠的特性
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二关键知识点

    施加横向磁场并随时间逐渐减弱横向磁场。 实现量子退火最关键的技术为超导技术(使用处于超导状态的金属家住绝缘体的约瑟夫森器件制作)。量子退火机的使用方法是将每个事务之间的关联作为量子
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算

    分介绍了量子计算机的工作原理、计算能力、研发现状等专业知识点;第二部分介绍了量子计算机的应用场景,比如工厂、物流、智慧交通、自动驾驶等等;正
    发表于 03-05 17:37

    量子计算机重构未来 | 阅读体验】初探

    ,自己专门去查阅了网上的资料,发现量子计算能用一个量子比特表示以前需要多个门电路组合才能表示的数据。也就意味着,以前需要复杂门电路实现的逻辑运算,在
    发表于 03-04 23:09

    量子计算机 未来希望

    自己从事语音识别产品设计开发,而量子技术和量子计算机必将在自然语言处理方面实现重大突破,想通过此书学习量子
    发表于 02-01 12:51

    我国成功研制最新量子计算机:比超算快一亿亿倍

    2021年,中国科大团队进一步成功研制了113光子的可相位编程的“九章二号”和56比特的“祖冲之二号”量子计算原型机,使我国成为唯一在光学和
    的头像 发表于 11-24 16:26 496次阅读
    <b class='flag-5'>我国</b>成功研制最新<b class='flag-5'>量子</b><b class='flag-5'>计算</b>机:比超算快一亿亿倍

    本源量子投资的离子阱量子计算机获得新进展

    近日,本源量子投资的量子计算生态圈伙伴合肥幺正量子科技有限公司(后简称“幺正量子”),在高通光离子阱量子
    的头像 发表于 11-02 08:23 196次阅读
    本源<b class='flag-5'>量子</b>投资的离子阱<b class='flag-5'>量子</b><b class='flag-5'>计算</b>机获得新进展

    量子计算原型机九章三号”刷新世界纪录

     这个成就是继2020年实现量子优越性”之后,中国科研团队再次在量子算力方面达到了新的里程碑
    的头像 发表于 10-17 17:30 952次阅读

    九章三号问世,刷新量子计算优越性纪录

    量子计算是后摩尔时代的一种新的计算范式,它在原理上具有超快的并行计算能力,可望通过特定量子算法在一些具有重大社会和经济价值的问题方面相比经典
    发表于 10-17 10:12 142次阅读

    中国科学家成功研制“九章三号” 255个光子的量子计算原型机

    。“九章三号”是255个光子的量子计算原型机,“九章三号”在处理高斯玻色取样数学问题比目前全球最快的超级
    的头像 发表于 10-11 17:06 864次阅读

    全球领先“量子计算”正式发布

    中国科学技术大学中国科学院量子信息与量子科技创新研究院组成的研究小组和中国科学院上海技术物理研究所合作祖冲之2号的诞生,我国是目前世界上唯一的量子物理体系和双边两种
    的头像 发表于 06-02 09:38 462次阅读

    “祖冲之号”量子计算云平台发布

    这刷新了中国云平台超导量子计算机比特数纪录,是国际上第一个实现超导量子路线量子优越性潜力并对外开
    的头像 发表于 06-01 10:29 752次阅读