0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于低内存 IoT 设备的神经网络

工程师邓生 来源:搜狐网 作者:互联隐财 2020-11-04 10:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

新的神经网络

一位来自俄罗斯的科学家开发了一种新的神经网络架构,并测试了其在识别手写数字上的学习能力。网络智能被混沌放大,分类准确率达到96.3%。该网络可用于具有少量 RAM微控制器,并嵌入到鞋子或冰箱等家居用品中,使其“智能”。这项研究发表在《电子》上。

今天,寻找新的神经网络,可以操作微控制器与少量的随机访问内存(RAM)是特别重要的。为了进行比较,在普通现代计算机中,随机访问内存以千兆字节为单位计算。尽管微控制器的处理能力比笔记本电脑智能手机要小得多,但它们体积更小,可以与家用物品进行接口。智能门、冰箱、鞋子、眼镜、水壶和咖啡壶为所谓的环境智能奠定了基础。这个词表示一个互联的智能设备的环境。

环境智能的一个例子是智能家居。内存有限的设备无法存储大量密钥,用于安全数据传输和神经网络设置阵列。它阻止将人工智能引入物联网设备,因为它们缺乏所需的计算能力。但是,人工智能将使智能设备在分析和决策上花费更少的时间,更好地了解用户,并友好地帮助他们。因此,在创造环境情报方面,例如在保健领域,可以出现许多新的机会。

俄罗斯彼得罗扎沃茨克州立大学的安德烈·维利奇科(Andrei Velichko)创建了一种新的神经网络架构,允许高效使用少量 RAM,为将低功耗设备引入物联网创造了机会。网络称为 LogNNet,是一个馈送神经网络,其中信号仅从输入定向到输出。它对传入信号使用确定性混沌滤波器。系统随机混合输入信息,但同时从最初不可见的信息中提取有价值的数据。储层神经网络也使用类似的机制。为了产生混沌,应用了一个简单的逻辑映射方程,其中下一个值是根据前一个值计算的。该方程通常用于人口生物学,并作为计算混沌值序列的简单方程的示例。这样,简单方程存储处理器计算的无限随机数集,网络体系结构使用它们并消耗更少的 RAM。

安德烈·维利奇科

这位科学家在 MNIST 数据库中的手写数字识别上测试了他的神经网络,该数据库被认为是训练神经网络识别图像的标准。该数据库包含 70,000 多个手写数字。其中6万个用于训练神经网络,另外10,000个用于网络测试。网络中的神经元和混乱性越多,识别图像的越好。网络实现的最大精度为96.3%,而开发的体系结构使用的 RAM 不超过 29 KB。此外,LogNNet 在 1-2kB 范围内使用非常小的 RAM 尺寸展示了有希望的结果。微型控制器,Atmega328,可以嵌入到智能门,甚至智能鞋垫,具有大致相同的内存量。

“由于这一发展,物联网的新机遇正在打开,因为任何配备低功耗微型控制器的设备都可以使用人工智能供电。这样,就为智能处理外围设备上的信息而打开一条路径,而无需将数据发送到云服务,从而改进了智能家居等操作。这是彼得罗扎沃茨克州立大学的科学家积极研究的物联网技术发展的重要贡献。此外,这项研究还概述了研究混乱对人工智能影响的替代方法,”安德烈·维利奇科说。

责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106828
  • 内存
    +关注

    关注

    9

    文章

    3173

    浏览量

    76124
  • 智能家居
    +关注

    关注

    1942

    文章

    9944

    浏览量

    195599
  • IOT
    IOT
    +关注

    关注

    189

    文章

    4371

    浏览量

    206701
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储器内。 在仿真环境下,可将其存于一个文件,并在 Verilog 代码中通过 readmemh 函数
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 714次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 898次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据怎么查看?

    无法观察神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据
    发表于 03-06 07:10

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不进行任何计算
    的头像 发表于 02-12 16:41 1265次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1346次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1613次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算
    的头像 发表于 02-12 15:18 1300次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1364次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1548次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP
    的头像 发表于 02-12 15:12 1201次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 856次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2272次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法