0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI的历史、现在和未来

华为开发者社区 来源:华为云社区 作者:寻水的鱼 2020-11-02 17:17 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

AI是什么?

根据维基百科的定义,人工智能是一种新的通用目的技术(GPT, General Purpose Technology),它横跨整个人类经济的多种用途,具有巨大技术性互补和溢出效应。简而言之,AI是21世纪的一种基础技术,它会应用在我们日常生活的方方面面。

02

AI的历史、现在和未来

早期,受到20世纪数学哲学的影响,诞生出两种流派的人工智能。基于形式主义(认为所有数学分支都可以公理化的)和逻辑主义(一切数学都是建立在数理逻辑的基础之上)的符号主义的人工智能,以及基于构造主义的连接主义和行为主义人工智能。

早期的流派都认为自己提出的理论有很大的潜力,可以解决很多问题。但在经过一系列探索后,科学爱家发现AI并没有想象中的简单。 之后,AI经历了起起落落的发展阶段。直到2006年,深度学习之父Geoffrey Hinton 和他的学生Ruslan Salakhutdinov在《科学》上发表了一篇文章,提出了深层网络训练中梯度消失问题的解决方案,至此开启了深度学习在学术界和工业界的浪潮。 2012年,Geoffry Hinton又带着团队参加了ImageNet ILSVRC挑战赛,以惊人的优势获胜(错误率比第二名低了足足 10%),这次的比赛结果以及相应的论文拉开了深度学习的热潮。 而深度学习之所以会从2006年后大放异彩,很大一部分的原因是数据、算力的发展,当时的数据集ImageNet的数据量很大,再加上使用GPU训练深度学习网络,这两个突破奠定了深度学习的崛起。如今,GPU的算力也越来越强,现在的AI发展又是如何呢?

03

AI应用落地的三驾马车

当前,数据、算法、算力的发展突破正推动AI应用的逐步落地。

1、数据资源丰富

随着物联网基础设施及智能手机、可穿戴设备的普及,我们每个人时刻都在产生大量数据。据IDC发布《数据时代2025》的报告显示,全球每年产生的数据将从2018年的33ZB增长到175ZB,相当于每天产生491EB的数据。另一方面,大数据等技术,降低了数据处理和存储的成本,数据作为人工智能时代的“石油”,驱动着AI的发展。

2、算法持续突破

在传统深度学习CNN/RNN系列模型之后,强化学习、对抗网络算法模型不断涌现。AI算法逐步逼近人类水平。自然语言处理(NLP)方面,2018年Google推出的BERT开启了NLP的元年,如今BERT在数据集上的两个指标(GLUE基准:80.4%,MultiNLI准确度:86.7%)全面超越人类。 计算机视觉方面,图像分类的算法很早之前就已超越了人类;动作识别目前精读相对较低,停留在52.5%;人脸识别的某些数据集也已经超越了人类。 语音语义识别方面,中文语音识别准确率达到新高度,中文语音识别字错率(CER)达到3.71%,与人类专业的速记员水平相当。

3、AI芯片释放巨大算力

AI芯片市场细化,推理与训练、云侧与端侧分离,性能持续提升,突破摩尔定律瓶颈,释放ZB级数据分析算力。 NVIDIA的Tesla V100,作为AI训练通用芯片,性能远超上一代P100的10+倍; Google的TUP3.0是2.0性能的8倍左右; 华为也推出了适用于推理场景的昇腾310以及适用于模型训练的昇腾910。从早期的CPU、GPU到现在的TPU、ASIC,进入到细分领域后,各种AI专用芯片会层出不穷,性能不断提升,功耗不断降低。

04

未来,AI是否会超越人类?

当前,一些算法在某些数据集上的准确率已经高于人类,很多人会问:AI是否会超越人类?

如图,首先并不是人类社会的所有问题都是数学问题,有很多问题是不能用数学来描述,黄色圈子内是可以用数学解决的问题。 由此引出了第一个问题:世界上是否所有数学问题都有明确的答案?答案是有些数学问题是无解的。 第二个问题:如果有明确的答案,是否可以通过有限步骤的计算得到答案?这就是数学的可计算问题,经过验证,并不是所有数学问题都是可以计算。 接下来是第三个问题:对于那些有可能在有限步骤计算出来的数学问题,能否有一种假想的机械(图灵机),让它不断运动,最后当机器停下来的时候,那个数学问题就解决了?结果是只有部分问题是图灵机能够解决的。 回答完上面三个问题后,再回看上面那张图,蓝色圈子里面的一个小圆是AI可以解决的问题,最后的小点才是AI已经找到解决方法的问题,只占据非常小的一部分。 所以,我们可以说,在AI已经找到解决方法的问题上,它可能超越了人类,但是在更多的问题上,它是没办法超越的。那么在某些领域里,AI的准确率既然高于人类,比如图像识别,它可以完全替代人类吗?

如上图所示,左边是正常的原图,中间是干扰数据,让AI预测的是加了干扰数据的右图。我们可以很清楚的辨别左右两组图完全没有区别,但是AI算法做不到,它会把右边的三张图片都判断为鸵鸟。

再来看另一组AI犯错的案例,上面是一些噪点和花纹的数据,但AI有99.6%的概率会将这些图片识别成某种类别的物体。在我们普通人来看,AI有时候会犯一些非常愚蠢的错误。 这时候再回答“未来,AI是否会超越人类?”的问题,答案就是:AI能解决的只是人类社会中很小的一部分问题,即使它能解决,并在统计意义上得到一个还不错的准确率,但它有时还是会犯很愚蠢的错误,AI的预测结果并不是完全可信的,AI不会超越人类,它应该成为人类的工具,使人类社会的生产效率进一步提高。

05

人工智能入门的三大难点

最后谈谈高校学生,或者是普通开发者学习AI可能会碰到的一些问题,主要有以下三个难点: 一是要学习的基础知识太多,做AI开发涉及到Python编程知识、Linux知识,视觉方面要学图像处理、OpenCV等,同时还要有一定的数学基础。 二是没有GPU机器,自己买GPU做AI训练,成本非常高。 三是碰到问题找不到人进行交流,尤其是非计算机专业的同学学AI会比较难,因为做AI开发不像传统的软件开发那样有非常多的书籍资料和社区可以交流,很多人只能在GitHub上找一些资料来解决学AI过程中的一些问题,能交流的人和圈子都会更少一点。

06

结语

幸运的是,华为云提供了一站式AI开发平台ModelArts,可以低门槛、低成本的上手AI,并且提供ModelArts社区、《ModelArts人工智能应用开发指南》等书籍,解决学习AI过程的以上三个难点。更加详细的技术解读还可以到华为云社区,搜索华为云EI图像算法专家零一老师的直播《开发者如何抓住时代机遇学好AI》!

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    90

    文章

    38225

    浏览量

    297072
  • 人工智能
    +关注

    关注

    1813

    文章

    49772

    浏览量

    261710
  • 华为云
    +关注

    关注

    3

    文章

    2805

    浏览量

    19093

原文标题:普通人如何站在时代风口学好AI?这是我看过最好的答案

文章出处:【微信号:Huawei_Developer,微信公众号:华为开发者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    微软科技通过AI技术和云创新驱动零售业的未来

    Levi's正与微软展开深度合作,共同描绘AI技术驱动的零售业未来。作为拥有175年历史的全球服装品牌,Levi's正在以智能Microsoft 365 Copilot副驾驶
    的头像 发表于 12-09 17:39 897次阅读

    Shell历史命令history用法

    1. 显示历史命令列表 「介绍」:history 命令用于显示当前会话中执行过的命令的列表,以及每个命令对应的编号。「示例代码」:history 2. 使用历史命令重复执行命令 「介绍」:通过
    发表于 12-02 06:10

    AI赋能6G与卫星通信:开启智能天网新时代

    需求?传统网络会因流量激增而拥堵,而AI赋能的6G网络则能提前预测流量模式,动态调整资源分配。 AI算法能够实时分析海量数据,包括用户位置、网络负载、历史流量模式等。在2025年上海世界移动通信大会
    发表于 10-11 16:01

    AI芯片:科技探索与AGI愿景》—— 勾勒计算未来的战略罗盘

    好奇的读者。它告诉我们,AI芯片的竞争不仅是技术竞赛,更是一场关于未来智能社会话语权的战略博弈。这本书是一部能够激发深度思考、拓宽认知边界的启思之作。
    发表于 09-17 09:32

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI未来:提升算力还是智力

    本章节作者分析了下AI未来在哪里,就目前而言有来那个两种思想:①继续增加大模型②将大模型改为小模型,并将之优化使之与大模型性能不不相上下。 一、大模型是一条不可持续发展的道路 大模型的不可
    发表于 09-14 14:04

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    生物化学计算机,它通过离子、分子间的相互作用来进行复杂的并行计算。因而未来可期的前景是AI硬件将走向AI湿件。 根据研究,估算出大脑的功率是20W,在进行智力活动时,其功率会增大到25~50W。在大脑进化
    发表于 09-06 19:12

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    AI芯片:科技探索与AGI愿景》这本书是张臣雄所著,由人民邮电出版社出版,它与《AI芯片:前沿技术与创新未来》一书是姊妹篇,由此可见作者在AI芯片领域的功力和造诣。 作者毕业于上海交
    发表于 09-05 15:10

    AI未来,属于那些既能写代码,又能焊电路的“双栖人才”

    AI未来,属于那些既能写代码,又能焊电路的“双栖人才”——来自WAIC 2025的一线观察2025年7月,上海世博中心,**第七届世界人工智能大会(WAIC 2025)**上,我们看到一个格外清晰
    发表于 07-30 16:15

    【免费送书】AI芯片,从过去走向未来:《AI芯片:前沿技术与创新未来

    步伐、介绍新兴领域和最新动向。↓↓↓立即跳转参与活动↓↓↓【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》Part.1AI芯片,
    的头像 发表于 07-29 08:06 869次阅读
    【免费送书】<b class='flag-5'>AI</b>芯片,从过去走向<b class='flag-5'>未来</b>:《<b class='flag-5'>AI</b>芯片:前沿技术与创新<b class='flag-5'>未来</b>》

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    问题请咨询工作人员(微信:elecfans_666)。 AI芯片,从过去走向未来 四年前,市面上仅有的一本AI芯片全书在世界范围内掀起一阵求知热潮,这本畅销书就是《AI芯片:前沿技术
    发表于 07-28 13:54

    Nordic收购 Neuton.AI 关于产品技术的分析

    与 Nordic 的 nRF54 系列超低功耗无线 SoC 结合,使得即使是资源极为有限的设备也能高效运行边缘 AI。Nordic 目前正在将 Neuton 深度集成到自身开发生态中,未来会提供更多工具、固件
    发表于 06-28 14:18

    AI技术助力打造绿色未来

    AI 能否引领我们走向更可持续的未来,还是会加剧全球能源和气候挑战?
    的头像 发表于 05-19 11:13 683次阅读

    Banana Pi 发布 BPI-AI2N &amp; BPI-AI2N Carrier,助力 AI 计算与嵌入式开发

    助力 AI、智能制造和物联网行业的发展。未来,Banana Pi 将继续深化与Renesas的技术合作,推动更多高性能嵌入式解决方案的落地。 ” BPI-AI2N开发板赋能多场景应用,结合丰富接口与高效
    发表于 03-19 17:54

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    正以550万美元的"拼多多模式",冲击万亿级市场格局。 在AI时代,FPGA与AI的结合正在重塑未来的芯片生态,主要体现在以下几个方面: 1.技术融合与创新
    发表于 03-03 11:21

    名单公布!【书籍评测活动NO.55】AI Agent应用与项目实战

    应用与项目实战》从AI工具的发展现状入手,详细介绍了该行业的发展状况,并根据作者观察到的现象对未来进行了理性的分析,并指出现有AI工具无法深入结合实际业务场景,如缺乏针对性和优化能力,难以持久发挥作用等
    发表于 01-13 11:04