0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何混合Si和SiC器件实现完整SiC MOSFET转换器相同效率的调制方案

电子设计 来源:powerelectronicsnews 作者:powerelectronicsnews 2021-03-22 13:00 次阅读

在现代时代,随着电动汽车(EV)和混合动力汽车(HEV)领域的所有进步对具有高功率密度和效率的转换器的需求已经增加,尤其是在电动汽车充电点的并网系统中[2] [3]。WBG(宽带隙)器件具有低损耗,快速切换能力和非常好的热稳定性,因此可以满足所有这些要求,但是由于成本高,这些器件并未广泛用于开发转换器[4]。SiC MOSFET的成本是其两倍,但与Si IGBT相比,它的高电流范围是其8倍。为了减少成本问题,现在的重点是混合Si和SiC器件。在[5]中,介绍了一种三级两级解耦有源中性点钳位电路(3L-TBANPC)。这实际上有助于利用SiC MOSFET的快速开关和Si IGBT的低成本。Si和SiC转换器能够提供与完整SiC MOSFET转换器相同的效率。

基本混合拓扑

3L-ANPC整流器的电路图如图1所示。它由六个开关组成。下表显示了3L-ANPC常用的开关状态。1表示高或接通状态,而0表示开关的低或断开状态。由于有很多开关处于0状态,这表明在低电平状态下使用不同的开关可以生成不同的调制方案[1]。

o4YBAGBYI5yANd3wAABwkTMquh0950.png

图:1. 3L-ANPC整流器

pIYBAGBYI6aAagymAADMUFd68pY958.png

表:3L-ANPC的开关状态

调制方案

提出了两种调制方案,其思想是观察哪些开关在基频上工作,而哪些开关在较高频率下工作。在第一调制方案中,使用开关状态P,PZ2,NZ2和Z。结果表明,对于正半周期开关,S5和S3处于导通状态,S6和S4处于关断状态,其中S1和S2是互补对。对于负半周期,S3和S4是互补对。所以S5和S6在基频下工作,开关损耗与S1-S4有关。

在第二调制方案中,使用开关状态P,PZ1,NZ1和N。结果表明,开关S1-S4接收到相同的门控信号,因此这里S5和S6是互补对。S5和S6中的开关损耗较高。

降低开关损耗的有效方法是使用SiC MOSFET代替Si IGBT来工作在高频下的开关。分别针对第一和第二调制方案,图2中显示了4-SiC混合3L-ANPC整流器,图3中显示了2-SiC混合3L-ANPC整流器。

改进的调制方案

正常调制方案和改进的调制方案之间的区别是零电平输出处的共零(CZ)状态操作[6]。对于CZ动作的电流或者流至S5和S2或S6和S3和在特定温度下的Si MOSFET和SiC MOSFET所提供的阻力是几乎相等,这意味着它们被串联连接在等效电阻降低到一半并行[1]。

在上述第一调制方案中,开关S5和S6在基频下工作,而开关S1至S4在高频下工作。如图2所示,将使用4-SiC混合3L-ANPC整流器来改善调制。这次我们引入CZ状态而不是零电平的PZI。因此,在正半周开始时,三个开关S1S3S5处于导通状态,而开关S2S4S6处于关断状态。在S1关断期间,电流流过与S1相连的二极管。期间S的转2桥臂电压和S的漏极-源极电压6达到零,这意味着在S的转动6是一个ZVS操作[1]。开关损耗不变,但是电容器电容器充放电损耗仍然存在,但是由于使用SiC材料,这些损耗可以忽略不计。

在第二调制方案中,S1至S4在基频下工作,S5和S6在高频下工作,因此,如图3所示,此处将使用2-SiC混合3L-ANPC整流器来改善调制效果。对于零电平操作,将使用CZ状态。如在第一调制方案中那样,开关S1S3S5为接通,而开关S2S4S6为断开。首先,在S5关断期间,电流将流经与其相连的二极管。然后S6将打开,而S1将关闭,结果是桥臂电压达到零。S5将关闭,并且由于没有电流流过S5,因此它是ZCS操作。S2两端的电压为零,这意味着S2的导通是ZVS操作[1]。在这种新的调制方案中,开关损耗不会增加,但是电容器的充电和放电损耗仍然存在,但是这些损耗可以忽略不计。

o4YBAGBYI7GAdnHMAADENVgTsIw510.png

图2:4-SiC混合3L-ANPC整流器

pIYBAGBYI7yADAvoAAC9B9cAgZ0486.png

图3:2-SiC混合3L-ANPC整流器

整流器比较

2-SiC混合整流器在P和CZ状态之间转变所需的步数要多于4-SiC混合整流器所需的步数,这往往会增加死区时间,电容器的充电放电损耗也增加,但电容器的充电损耗却增加了。传导损耗减少[1]。在4-SiC混合整流器中,充电放电损耗保持不变,并且传导损耗的降低幅度甚至超过了2-SiC混合方案。因此,4-SiC混合调制方案可以提供更高的效率,但是该方案无法应用于逆变器

实验结果和原型

图4显示了用于评估建议的调制方案效率的原型。拟议的原型具有2KW的额定功率和800V的直流电压。输入为220V AC,频率为50 Hz,开关频率为40Hz [1]。滤波电感和电容分别为1.4mH和4.7uF。结果表明,在S6导通和关断期间采用改进的调制方案时,漏极-源极电压为零,因此开关损耗不会增加。电容器的充电放电损耗也不会改变。由于漏极源极电压尖峰,此方案不适用于逆变器。结果还表明,效率提高了0.05%至0.2%[1]。

图4:Si和SiC混合3L-ANPC转换器

结论

改进的调制方案减少了由于使用SiC器件而引起的传导和开关损耗。结果表明,4-SiC混合3L-ANPC整流器可以实现更高的效率。效率提高了0.05%至0.2%。改进的调制方案有一个缺点:由于电压尖峰问题,它不能应用于逆变器应用。

参考

[1]具有低传导损耗的“ Si&SiC”混合3L有源NPC整流器的改进调制方案楼秀涛,陈光,张立,赵凤辰,吴峰能源与电气工程学院,河海大学,南京211100,

[2] L. Zhang,Z。Zheng,C。Li,P。Ju,F。Wu,Y。Gu,和G. Chen,“具有改进调制方案的Si&SiC混合五电平有源NPC逆变器”,IEEE Trans 。电力电子。,2019,抢先体验。

[3] L. Zhang,K。Sun,X。Y. Xing和J. Zhao,“具有通用DC总线和AC总线的模块化单相无变压器并网光伏逆变器的并联操作”,在IEEE新兴期刊和精选主题中在电力电子学,卷。3号2015年12月,第4卷,第858-869页。

[4] C. Li,Q。Guan,J。Lei,C。Li,Zhang,S。Wang,D。Xu,W。Li,H。Ma,“ SiC MOSFET和Si二极管混合三相“高功率三电平整流器”,《 IEEE电力电子学报》,第1卷。34号》,第7卷,第6076-6087页,2019年7月。

[5] D. Zhang,J。He和S. Madhusoodhanan,“具有Si IGBT和SiC MOSFET的三级两级去耦有源NPC转换器”,2017年IEEE能量转换大会暨展览会(ECCE),俄亥俄州辛辛那提,2017年,第5671-5678页。

[6] J. He,D。Zhang和D. Pan,“一种用于大功率高频应用中“ SiC + Si”三电平有源中性点钳位转换器的改进的PWM方案”,2018 IEEE能量转换大会和博览会(ECCE),俄勒冈州波特兰,2018年,第5235-5241页。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11000

    浏览量

    222620
  • MOSFET
    +关注

    关注

    139

    文章

    6388

    浏览量

    209735
  • 整流器
    +关注

    关注

    28

    文章

    1426

    浏览量

    91579
  • SiC
    SiC
    +关注

    关注

    27

    文章

    2372

    浏览量

    61367
收藏 人收藏

    评论

    相关推荐

    怎么提高SIC MOSFET的动态响应?

    可行的解决方案。 首先,让我们了解一下SIC MOSFET的基本原理和结构。SIC(碳化硅)MOSFET是一种基于碳化硅材料制造的金属氧化物
    的头像 发表于 12-21 11:15 278次阅读

    功率电子器件从硅(Si)到碳化硅(SiC)的过渡

    功率等级的功率转换、更快的开关速度、传热效率上也优于硅材料。 本篇博客探讨了SiC材料如何提升产品性能以超越基于硅材料的领域,从而为我们全新的数字世界创造下一代解决方案。 硅基
    的头像 发表于 12-21 10:55 191次阅读

    SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨

    SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨
    的头像 发表于 12-05 17:10 466次阅读
    <b class='flag-5'>SiC</b>设计干货分享(一):<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>驱动电压的分析及探讨

    SiC MOSFETSi MOSFET寄生电容在高频电源中的损耗对比

    SiC MOSFETSi MOSFET寄生电容在高频电源中的损耗对比
    的头像 发表于 12-05 14:31 270次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 和<b class='flag-5'>Si</b> <b class='flag-5'>MOSFET</b>寄生电容在高频电源中的损耗对比

    Si对比SiC MOSFET 改变技术—是正确的做法

    Si对比SiC MOSFET 改变技术—是正确的做法
    的头像 发表于 11-29 16:16 156次阅读
    <b class='flag-5'>Si</b>对比<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 改变技术—是正确的做法

    SiC MOSFETSiC SBD的优势

    下面将对于SiC MOSFETSiC SBD两个系列,进行详细介绍
    的头像 发表于 11-01 14:46 770次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>和<b class='flag-5'>SiC</b> SBD的优势

    车规级功率模块封装的现状,SiC MOSFET器件封装的技术需求

    1、SiC MOSFET器件封装的技术需求 2、车规级功率模块封装的现状 3、英飞凌最新SiC HPD G2和SSC封装 4、未来模块封装发展趋势及看法
    发表于 10-27 11:00 440次阅读
    车规级功率模块封装的现状,<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>对<b class='flag-5'>器件</b>封装的技术需求

    【转帖】华润微碳化硅/SiC SBD的优势及其在Boost PFC中的应用

    SiC SBD开关损耗低,可提高系统效率 下图为相同规格的Si FRD和SiC SBD在不同温度下的反向恢复电流对比,其中
    发表于 10-07 10:12

    面向SiC MOSFET的STGAP2SICSN隔离式单通道栅极驱动

    单通道STGAP2SiCSN栅极驱动旨在优化SiC MOSFET的控制,采用节省空间的窄体SO-8封装,通过精确的PWM控制提供强大稳定的性能。随着SiC技术广泛应用于提高功率
    发表于 09-05 07:32

    一文看懂SiC功率器件

    范围内控制必要的p型、n型,所以被认为是一种超越Si极限的功率器件材料。SiC中存在各种多型体(结晶多系),它们的物性值也各不相同。用于功率器件
    的头像 发表于 08-21 17:14 1160次阅读
    一文看懂<b class='flag-5'>SiC</b>功率<b class='flag-5'>器件</b>

    SiC MOSFET栅极驱动电路的优化方案

    MOSFET的独特器件特性意味着它们对栅极驱动电路有特殊的要求。了解这些特性后,设计人员就可以选择能够提高器件可靠性和整体开关性能的栅极驱动器。在这篇文章中,我们讨论了SiC
    发表于 08-03 11:09 747次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>栅极驱动电路的优化<b class='flag-5'>方案</b>

    GeneSiC的1200V SiC肖特基二极管可实现更快的开关瞬变

    二极管中观察到的电容恢复特性为独立于温度,正向电流水平以及关断dI/dt。在Si技术中,不切实际外延规范将肖特基二极管降级为< 600 V的应用。GeneSiC的1200 V SiC肖特基二极管是专门设计的,以尽量减少电容电荷,从而
    发表于 06-16 11:42

    SiC mosfet选择栅极驱动IC时的关键参数

    Navitas的GeneSiC碳化硅(SiC) mosfet可为各种器件提供高效率的功率传输应用领域,如电动汽车快速充电、数据中心电源、可再生能源、能源等存储系统、工业和电网基础设施。
    发表于 06-16 06:04

    SiCSi的应用 各种SiC功率器件的特性

    碳化硅(SiC器件是一种新兴的技术,具有传统硅所缺乏的多种特性。SiC具有比Si更宽的带隙,允许更高的电压阻断,并使其适用于高功率和高电压应用。此外,
    发表于 04-13 11:01 1496次阅读

    碳化硅SiC MOSFET:低导通电阻和高可靠性的肖特基势垒二极管

    阻并提高可靠性。东芝实验证实,与现有SiC MOSFET相比,这种设计结构在不影响可靠性的情况下[1],可将导通电阻[2](RonA)降低约20%。功率器件是管理各种电子设备电能,降低功耗以及
    发表于 04-11 15:29