0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

成本上涨近10倍 深度学习如何让传统机器视觉企业买单?

Simon观察 来源:电子发烧友网 作者:黄山明 2020-10-22 08:23 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电子发烧友报道(文/黄山明)随着当前工业制造技术的高速发展,机器视觉技术已经逐步成为工业自动化生产过程中不可或缺的关键组成部分。从功能上看,机器视觉的主要作用是利用机器替代人眼,通过机器的视觉能力,实现对物体的识别、检测、测量、工业机器人的定位引导等功能。

从技术角度来看,传统的工业视觉通过高分辨率图像对物体进行检测或识别。那么是否可以结合人工智能技术,让机器视觉变得更加智能,更加精准呢?答案显然是可以的,并且已经有许多厂商在这条道路上快速前行。

据国内公开数据统计,2018年中国机器视觉行业销售总额为83.9亿元,比上年同期增长21.6%;研发投入增长至11.7亿元,同比增长32.8%。据专业调研机构Grand View Research的预测,到2025年,全球机器视觉市场空间将超过180亿美元,年均复合增速7.7%,快速增长的市场也吸引了诸多玩家投身其中。

深度学习让机器视觉定义缺陷更快速

以外观缺陷检测为例,传统的工业视觉需要由专业的人员对机器进行大量的调试,繁复的调试工作不仅需要大量的工时,同时还需要品管人员进行反复的校核,最终进入产线检测。而将深度学习与传统视觉相结合,将极大地优化作业流程。

康耐视华南区销售经理刘墨在接受电子发烧友采访时称:“与过去的机器视觉技术不同的是,传统机器视觉在前期需要做许多参数的调试,而深度学习的机器视觉是做一种定义的判断,根据给出样品照片为产品的缺陷下一个定义。”

深度学习工具|康耐视


与传统视觉一个明显的区别就是,只要有足够的数据,深度学习的机器视觉可以极大缩减前期调试工作的时间,只需要将数据输入给机器,就能由机器完成建模,以及形成对缺陷的认知。

刘墨表示:“康耐视是一家专注于机器视觉的公司,因此在深度学习具有一定优势,一个是训练样本的数量并不需要太大,单个类型的缺陷(如划伤、压痕),仅需要20张左右的图片训练就能够完成初步识别;此外,在训练时间上,康耐视也有一定优势,过去一家拥有8000张图片素材的客户,训练只花费了20分钟左右,而许多厂商的做法是今天晚上将图片输入进去,第二天早上再来看结果。”

不过这样会产生一个问题,即识别样品较少,只能让机器初步对某个缺陷产生认知,但这个认知并不完善。深圳市深视创新科技有限公司大客户经理武栓弟表示:“大多数采用深度学习的机器视觉公司,都能用少数的图片完成识别,并出具初级报告,但要达到很好的识别效果,还需要更多的样品照片训练才行。”

刘墨也表示,如果要机器视觉达到较好的识别,除了需要足够的样品照片训练之外,检测结果还需要与品管进行对照,来加强准确性。

将深度学习应用在传统视觉上的优点显而易见,可以节省大量前期准备工作,同时不用更改结构,准备好数据投喂即可。当然,缺点同样在于数据,尽管用少量的样品图片就能够完成机器的识别,但想要获得较好的识别效果,也必须准备足够的样本才行。

成本将近10倍 深度学习为何这么贵?

对于工业制造而言,一项成熟的技术除了能够提高生产效率外,还需要降低成本,这才能得到快速的推广。那么具体到深度学习的机器视觉技术而言,其表现又如何呢?

刘墨认为,成本是相对的,同时这项技术的出现也主要是为了替代人工,行业内通常是一年半可以收回成本,而康耐视解决方案的成本,可以在一年内收回。

从具体的价格来看,据武栓弟透露,一套不含生产线的深度学习机器视觉解决方案价格在16万元左右。但一套传统的机器视觉检测方案价格是多少呢?据深圳市倍诺自动化设备有限公司副总经理瞿剑飞表示,一套普通的机器视觉方案价格在2万以内。

为何深度学习解决方案价格会高出这么多?一个是开发过程需要基于工具的规则变成与基于实例的培训,同时在硬件投入上,深度学习需要更多的处理和存储。

工业图像缺陷样本管理系统|深视创新


当然,贵有贵的好处,深度学习可以在没有明确编程的情况下解决特定任务。以产品划痕缺陷检测为例,传统视觉中对于这种检测需要进行严格的定义,通过设定不同的尺寸来看机器判断什么是划痕,而深度学习系统可以通过数据的喂养,识别出不在喂养数据之内的划痕缺陷。

此外,对于传统机器视觉而言,检测具有复杂表面纹理和外观变化的视觉相似部件是一个困难的挑战。同时检测现场还存在多个变量,如光照、颜色变化、曲率等,一些缺陷检测用传统的机器视觉很难做到,而深度学习为解决这些问题带来了可能。

传统机器视觉检测在面对这些问题时,需要不断的进行调试,以及外部环境的配合,检测准确率的提升是一个繁琐的工作,但通过深度学习,只需要持续的进行样品数据的训练,便能不断的提高机器视觉检测的准确度。

不过瞿剑飞也提出了一个观点,虽然深度学习可以帮助企业更好的解决传统机器视觉的检测难点问题,但这些问题很多可以通过外部调试进行完善,比如可以通过加强光照解决现场灯光复杂的问题。而对于企业而言,很难完全利用到深度学习中的所有功能,那么对于这个企业而言,那些多余的功能就是一种浪费。因此,选择深度学习还是传统机器视觉,需要企业自己去衡量。

深度学习能替代传统机器视觉吗?

需要注意的是,深度学习并非适合所有检测场景,如在流水生产线中,产线不停的情况下进行快速检测。刘墨表示这种情况可以使用传统机器视觉方案解决。

广东广源智能科技有限公司便是一家通用智能高速机器视觉平台,据其销售工程师王吕森介绍,其平台正是适用于产线高速机器视觉检测的,不过高速检测必须具备几项条件,一个是缺陷种类少,另一个是产品形状规范,如对塑料瓶的检测。

王吕森表示,他们也尝试过深度学习的机器视觉,但发现其中还存在一个问题,深度学习可以快速形成对缺陷的认知是建立在大量数据的基础上的。但对于许多企业而言,前期缺陷数据的收集比较欠缺,这时就需要厂商进行协助。

刘墨对此还举了一个案例,今年疫情期间,某家LED芯片半导体公司返工困难,质检人员稀缺,为厂商带来了极大地困难。康耐视通过深度学习产品,陪同客户在现场做了将近一个月的验证,对放大200倍的芯片图片进行分析判断,成功的将之前由人工判断的缺陷检测出来,而且检测稳定性远远高于人工。

特殊时期可以理解,但对于普通工厂而言,如果要求原厂派人员在现场进行长时间的调试,其成本显然不低。

对此,武栓弟提出,可以通过多设备联机质检进行大数据分析,即采用联网的方式,能有效节省人力成本。但这种情况只适用于可以联网的深度学习机器视觉设备中,而对于不可联网的设备,只能由工程师进行现场调试。

刘墨提出了一个较为完善的解决方案,即厂商自己学习建模,检测新的产品。康耐视也倾向让客户自己学习,一个是客户对自己的工艺更加熟悉,可以更准确的把握自己的需求。另一个则是厂商可能在生产中产生一些随机的要求,设备商可能需要时间前往现场才能满足客户的相关需求,但客户如果能够熟悉产品能够自己很快的进行重新调试。

此外,深度学习的机器视觉并不针对单一产品。武栓弟表示,深度学习最大的优势便是体现在其灵活性上。通过重新建模,可以很快将这套设备应用到其他产品的检测当中。

从这一点来看,对比传统机器视觉,深度学习可以通过训练,很快适应新产品的检测,意味着买一套方案可以适应所有的解决场所,这是过去很难做到的。但针对特殊场景,如生产线的快速检测,还是传统视觉的强项。可以认为深度学习是过去机器视觉的有利补充,双方并非替代的关系。

小结

总体而言,深度学习是机器视觉的一种延伸。企业向智能工厂的转变推动了机器视觉的发展,而对检测提出更高的要求,加上如今电脑技术的发展,让深度学习有了用武之地。需要注意的是,传统机器视觉与深度学习是互补而非替代的关系,深度学习的出现,可以为厂商带来最重要的差异化以及更丰厚的利润,在传统机器视觉已经高度成熟的今天,新的可行性技术也意味着新的财富密码。

本文由电子发烧友原创,未经授权禁止转载。如需转载,请添加微信elecfans999。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器视觉
    +关注

    关注

    163

    文章

    4735

    浏览量

    125068
  • 康耐视
    +关注

    关注

    0

    文章

    80

    浏览量

    14259
  • 广源智能
    +关注

    关注

    0

    文章

    1

    浏览量

    976
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    ,形成\"传统视觉算法→深度学习建模→工业级部署\"的完整技术链,帮助学员掌握从0到1搭建缺陷检测系统的能力,响应制造业\"提质降本增效\"的核心需求。 团购课程
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    %)为主要就业领域 本次团购通过整合11大系列课程,形成\"传统视觉算法→深度学习建模→工业级部署\"的完整技术链,帮助学员掌握从0到1搭建缺陷检测系统的能力,响应制造业\"提
    发表于 12-03 13:50

    从0到1,10+年资深LabVIEW专家,手把手教你攻克机器视觉+深度学习(5000分钟实战课)

    “告别检测系统能力缺陷!10+年LabVIEW视觉资深专家手把手教你:5000+分钟高清教程(含工具、算法原理、实战操作、项目优化全流程讲解)”——从传统视觉算法→
    的头像 发表于 12-02 08:07 136次阅读
    从0到1,10+年资深LabVIEW专家,手把手教你攻克<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>+<b class='flag-5'>深度</b><b class='flag-5'>学习</b>(5000分钟实战课)

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于
    的头像 发表于 11-27 10:19 63次阅读

    AI算法开发,SpeedDP打辅助!不止10效率

    。而那些能够带来10工作效率的AI自然能够轻松取代人类。当然这也是相对的,不是每个领域都适用,厨师再快,也无法实物快10熟;医生再优秀
    的头像 发表于 11-20 18:09 387次阅读
    AI算法开发,SpeedDP打辅助!不止<b class='flag-5'>10</b><b class='flag-5'>倍</b>效率

    思奥特智能视觉:构建光源生态体系,赋能机器视觉全场景应用

    在智能制造升级浪潮中,机器视觉技术正加速向高精度、高适应性方向演进。作为视觉系统的核心组件,光源的性能与集成能力直接影响检测效率与精度。 思奥特视觉突破
    的头像 发表于 11-17 14:20 105次阅读

    如何在机器视觉中部署深度学习神经网络

    人士而言往往难以理解,人们也常常误以为需要扎实的编程技能才能真正掌握并合理使用这项技术。事实上,这种印象忽视了该技术为机器视觉(乃至生产自动化)带来的潜力,因为深度学习并非只属于计算机
    的头像 发表于 09-10 17:38 713次阅读
    如何在<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 ,速度也快
    发表于 07-31 11:38

    10机器视觉上市企业2024年业绩分析

    高工机器人整理了埃科光电、凌云光、天准科技、奥普特、奥比中光、大恒科技、矩子科技、思林杰、佰奥智能、荣旗科技等10机器视觉上市企业的业绩。
    的头像 发表于 05-19 10:07 1188次阅读
    <b class='flag-5'>10</b>家<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>上市<b class='flag-5'>企业</b>2024年业绩分析

    端侧AI暗战开启!2024年蓝牙企业业绩集体上涨,Q1净利暴增10

    科技五家蓝牙芯片企业的业绩情况发现,上述公司在2024年的业绩均受益于终端市场需求兴起,且恒玄科技、泰凌微、炬芯科技在2025年第一季度的净利润都实现了翻倍增长,其中泰凌微的净利润翻了10
    的头像 发表于 05-06 08:05 2740次阅读
    端侧AI暗战开启!2024年蓝牙<b class='flag-5'>企业</b>业绩集体<b class='flag-5'>上涨</b>,Q1净利暴增<b class='flag-5'>近</b><b class='flag-5'>10</b><b class='flag-5'>倍</b>

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    : 一、机器视觉:从理论到实践 第7章详细介绍了ROS2在机器视觉领域的应用,涵盖了相机标定、OpenCV集成、视觉巡线、二维码识别以及
    发表于 05-03 19:41

    行业首创:基于深度学习视觉平台的AI驱动轮胎检测自动化

    全球领先的轮胎制造商 NEXEN TIRE 在其轮胎生产检测过程中使用了基于友思特伙伴Neurocle开发的AI深度学习视觉平台,实现缺陷检测率高达99.96%,是该行业首个使用AI平台技术推动缺陷检测自动化流程的
    的头像 发表于 03-19 16:51 791次阅读
    行业首创:基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>视觉</b>平台的AI驱动轮胎检测自动化

    深度自然匿名化:隐私保护与视觉完整性并存的未来!

    在科技快速发展的当下,个人隐私保护的需求日益凸显。如何能在隐私保护的基础上,保持视觉完整性,从而推动企业开发与创新? 深度自然匿名化(DNAT)已被证明是传统模糊化方法的更优替代方案,
    的头像 发表于 01-15 15:57 4817次阅读
    <b class='flag-5'>深度</b>自然匿名化:隐私保护与<b class='flag-5'>视觉</b>完整性并存的未来!

    机器视觉厂商博视像元完成亿元A+轮融资

    近日,机器视觉厂商北京博视像元科技有限公司(以下简称“博视像元”)宣布完成亿元A+轮融资,本轮融资由国投创业、北京创投等投资。
    的头像 发表于 01-03 11:34 1582次阅读

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习(一般指神经网络算法)是一个强大的工具,目前也非常流行,但它的应用领域仍然有限。与深度
    的头像 发表于 12-30 09:16 1986次阅读
    <b class='flag-5'>传统</b><b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导