0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能模型和算法需要创新体系结构和软件架构

牵手一起梦 来源:C114通信网 作者:乐思 2020-09-29 16:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在近日举行的“第十六届CCF全过高性能计算学术年会”上,中国工程院副院长、中国科协副主席、中国工程院院士陈左宁发表了题为《人工智能进展对算力需求分析》的演讲。在演讲中,她阐述了人工智能模型和算法的七大发展趋势。

陈左宁表示,经典的HPC的算力环境可支持现有人工智能的模型算法,但性能功耗比和性价比都较低,并非最适合的,需要创新体系结构和软件架构。

据介绍,人工智能的发展经历了三个历程。从符合主义到连接主义再到行为主义。符号主义主要是用公理和逻辑体系搭建一套人工智能系统。连接主义源于仿生学,主张模仿人类的神经元,用神经网络的连接机制连接人工智能。行为主义控制论意为假设智能取决于感知和行动。

陈左宁称,三大流派日趋融合,协同发展,人工智能的核心特征之一是“关系”。

据介绍,“关系”计算的表现形式有三种。一是连接关系,神经网络中神经网元间的连接。反向传播算法中的梯度传播;进化算法中的变异。二是逻辑关系。RNN中的循环连接以及知识图谱中的关联关系。三是因果关系,贝叶斯、决策树以及强化学习中的控制连接。

在演讲中,陈左宁详细介绍了人工智能模型和算法发展的七大趋势。

趋势一、向无监督的方向发展。主要表现为:适应“小数据”,减少标注需求,减少计算开销。要向无监督方向发展要经历几个阶段。人工智能主动学习阶段,算法主动提出标注请求,将一些经过筛选的数据提交给专家标注。迁移学习阶段,增强训练好的模型,解决目标领域中仅有的少量有标签样本数据的问题。强化学习阶段,用agents构成系统来描述行为并给予评价和反馈学习。

趋势二、可解释(XAI)越来越重要。深度学习如何进一步设计算法和参数,提高泛化能力,需要模型算法可解释。对抗样本导致模型失效,训练数据不可理的被局部放大。模型愈加复杂,失去了可调式性和透明度。

“此时,对于技术的需求就是将可解释技术融入软件环境中去。有两个方法。第一为现有软件框架增加可解释技术接口。提供事后解释的基本技术,比如可视化能力,局部数据分析,特征关联等。现有的软件原生支持多种可解释算法。提供算法或指标评估模型的可解释能力。第二是“人—AI”系统结合。以人为中心,由决策理论驱动的XAI的概念框架。” 陈左宁表示。

趋势三、人工智能的自学习、自演化。这个过程有三个阶段。一是自动化机器学习,主要是利用数据驱动方式来做决策。而是限制约束条件的AutoML。三是不舍初始条件,搜索空间极大丰富的自演化AutoML。这一趋势对于技术的需求有计算框架支撑、大算力支撑以及辅助设备支撑。

趋势四、多种算法、模型的有机结合。单一的算法或模型难以解决实际问题。比如问题分解和多种模型有机组合。人工智能模型的发展希望融入多种技术来解决已有问题。比如,通过贝叶斯技术增强因果关系分析;通过数据生成技术减少标注数据需求;通过AutoML技术提高搜索和挖掘能力。与此同时,人工智能的应用流程也越来越复杂,如,不同流程设计的设备以及环境多样;需要不同的算法和模型组合。多种算法、模型的有机组合的需求是计算存储等可拓展能力。基础软件能力提升,支持复杂模型,不同类型软件的协同和交互。

趋势五、人工智能应用需求需要关注全生命周期。全周期不同人物具有不同时间,空间和计算需求。全生命周期都要考虑可解释、公平等需求。

趋势六、分布式、分散式的需求越来越突出。首先,大型、复杂模型,海量数据需要并行,分布式计算。其次,联邦学习等分散场景需要分布式ML原生算法。使多个参与者可以在不共享数据的情况下构建通用的,健壮的机器学习模型,从而解决关键问题。不同节点上的数据集异构(分布不相同),大小可跨越几个数量级。节点可能不可靠,节点之间的互联可能不稳定。类别优集中式、分散式以及迭代式。这一趋势对安全性、架构、提升效率和效用、健壮性有需求。

趋势七,深度推理。从计算到感知再到认知和意识,人工智能模型和算法的发展趋势七是认知理论的进一步突破。这一趋势的需求有效应对多种形式的不确定性。其中概率计算根据不同精度计算需求设计硬件。根据数据和计算的稀疏分布设计。另外,这一趋势的需求还有类脑、仿脑体系结构以及模拟计算。

陈左宁总结说,总体来说,AI趋势对算力的需求主要是对软件栈的需求。从AI发展趋势的特点来看,关系、概率、近似计算更突出;不要求高精度、高容错;节点上计算简单;人在环路中需求明显。因此,对软件栈的需求更加多样,比如复杂、动态、分布式和分散;支撑新场景以及架构创新。目前AI算法仍在基本计算模式中。

陈左宁坦言:“未来的复杂问题可能会超越此模式,目前的模型和算法主要是低精度张量计算。”

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106820
  • 人工智能
    +关注

    关注

    1813

    文章

    49752

    浏览量

    261639
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    云知声荣获2025人工智能治理示范案例

    服务业协会联合组织征集的《北京人工智能治理案例集》在会议期间正式发布。云知声"基于医疗大模型和医学知识图谱技术打造可信可靠的医学AI应用"凭借其创新的技术架构和卓越的治理实践,荣获"
    的头像 发表于 11-10 17:28 823次阅读

    人工智能+工业软件智能仿真加速赋能产业变革

    安全可靠的虚拟环境。通过仿真技术,产品研发、生产运维等环节的试错成本大幅降低,科研创新与产品迭代速度显著加快。 亚洲仿真联盟理事长张霖指出,建模仿真技术与人工智能的深度融合是行业发展的必然趋势,完善的数据治理体系是建模仿
    的头像 发表于 10-09 14:16 246次阅读

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    应用。 为什么选择 Neuton 作为开发人员,在产品中使用边缘人工智能的两个最大障碍是: ML 模型对于您所选微控制器的内存来说太大。 创建自定义 ML 模型本质上是一个手动过程,需要
    发表于 08-31 20:54

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    的深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入学习人工智能技术的人来说
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    的深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入学习人工智能技术的人来说
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    架构信创人工智能通识教育基地首批试点单位名单公布

    通识课程体系”的号召,龙芯中科发布“龙架构信创人工智能通识教育基地建设计划”,自该计划发布以来,众多高校积极响应参与,基于龙架构生态开展教学活动的意愿强烈。
    的头像 发表于 07-15 15:10 947次阅读

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的
    发表于 07-04 11:10

    软通动力中标无锡人工智能创新中心项目

    软通动力凭借人工智能工程化一站式服务能力成功中标“无锡人工智能创新中心项目” ,中标金额1.58亿元。
    的头像 发表于 05-27 17:45 805次阅读

    明晚开播 | 数据智能系列讲座第6期:大模型革命背后的算力架构创新

    背后的算力架构创新报告简介本报告回顾了AI技术演进的历程。随着人工智能技术的迅猛发展,特别是大模型的革命推动了计算架构的深刻变革,技术的突破
    的头像 发表于 05-20 08:04 340次阅读
    明晚开播 | 数据<b class='flag-5'>智能</b>系列讲座第6期:大<b class='flag-5'>模型</b>革命背后的算力<b class='flag-5'>架构</b><b class='flag-5'>创新</b>

    直播预约 | 数据智能系列讲座第6期:大模型革命背后的算力架构创新

    模型革命背后的算力架构创新报告简介本报告回顾了AI技术演进的历程。随着人工智能技术的迅猛发展,特别是大模型的革命推动了计算
    的头像 发表于 05-12 14:05 386次阅读
    直播预约 | 数据<b class='flag-5'>智能</b>系列讲座第6期:大<b class='flag-5'>模型</b>革命背后的算力<b class='flag-5'>架构</b><b class='flag-5'>创新</b>

    YOGO ROBOT人工智能在民生服务领域的创新应用

    近日,YOGO ROBOT携手宇树科技、数字华夏等多家智能科技企业,走进上海嘉定区南翔镇东社区党群服务中心,共同开展公益志愿科普服务活动。此次活动融合上海联通5G网络、云端大模型智能机器人技术,为社区居民带来前沿科技体验,展现
    的头像 发表于 04-17 15:58 819次阅读

    人工智能模型年度发展趋势报告

    2024年12月的中央经济工作会议明确把开展“人工智能+”行动作为2025年要抓好的重点任务。当前,以大模型为代表的人工智能正快速演进,激发全球科技之变、产业之变、时代之变,人工智能
    的头像 发表于 02-13 10:57 1524次阅读
    <b class='flag-5'>人工智能</b>大<b class='flag-5'>模型</b>年度发展趋势报告

    生成式人工智能模型的安全可信评测

    受到关注。但当前大模型仍然面临可信瓶颈,无法开展大规模应用。大模型的安全可信受到高度关注,国内外已经有多项法规与标准快速制定并落地。本文以层次化的结构,构建了生成式人工智能的安全可信评
    的头像 发表于 01-22 13:55 1571次阅读
    生成式<b class='flag-5'>人工智能</b><b class='flag-5'>模型</b>的安全可信评测

    卡诺模型人工智能领域提供了一种全新的视角

    在探索人工智能如何更深层次满足用户需求、提升用户体验的旅程中,卡诺模型(Kano Model)提供了一个极具价值的理论框架。这一模型不仅为产品开发者带来了深刻的洞察力,同时也为人工智能
    的头像 发表于 12-11 10:17 949次阅读